Estimating Phylogenies (Evolutionary Trees) Il

Biol4230 Thurs, March 1, 2018
Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057

Tree estimation strategies:

+ Parsimony
— ?no model, simply count minimum number of changes
— many sites not "informative"
— how minimum must minimum be?
+ Distance
— global "distance" between sequences (all sites informative)
— measured distances underestimate evolutionary change

— Combined algorithm/criterion approaches (UPGMA, NJ) use
distance

— where distance and parsimony differs
+ Statistical (Model based) approaches

fasta.bioch.virginia.edu/biol4230

To learn more:

Pevsner Bioinformatics Chapter 6 pp 179-212

** Felsenstein, J. Numerical methods for inferring evolutionary
trees. Quart. Review of Biology 57, 379-404 (1982).

Graur and Li (2010) "Fundamentals of Molecular Evolution"
Sinauer Associates

Nei (1987) "Molecular Evolutionary Genetics" Columbia Univ.
Press

Hillis, Moritz, and Mable (1996) "Molecular Systematics" Sinauer
Felsenstein (2003) "Inferring Phylogenies" Sinauer

Felsenstein (2015) "Systematics and Molecular Evolution: Some
history of numerical methods" Lecture at Molecular Evolution
Workshop: molevol.mbl.edu/images/e/ed/Felsenstein.15.2.pdf
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Finding the best / Estimating trees

+ Most strategies to reconstruct evolutionary
trees optimize some measure of "goodness"

— Parsimony methods minimize the number of
mutations

— Distance methods produce trees that match the
global distances between the sequences

— Maximum likelihood methods seek the tree that
best fits the data

+ What is the "best" method?

— produces accurate trees with the least data?

— converges to the correct tree as data increases?
+ We cannot know the "correct" tree

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Finding the best / Estimating trees

+ An optimality criterion defines how we
measure the fit of the data to a given solution
— parsimony / distance / Maximum likelihood

+ Tree searching is a separate step; this is how
we search through possible solutions (which
we then evaluate with the chosen optimality
criterion)

— Except for Neighbor-Joining and UPGMA, which
produce a result based on the search strategy

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Advantages

+ Parsimony:
— Widely applicable to many discrete data types (often used to combine
analyses of different data types)
— Requires no explicit model of evolutionary change
— Computationally relatively fast
— Relatively easy interpretation of character change
— Performs well with many data sets
+ Distance:

— Can be used with pairwise distance data (e.g., non-discrete
characters)

— Can incorporate an explicit model of evolution in estimation of pairwise
distances

— Computationally relatively fast (especially for single-point estimates)
+ Likelihood/Bayesian:
— Fully based on explicit model of evolution
— Most efficient method under widest set of conditions
— Consistent (converges on correct answer with increasing data, as long
as assumptions are met)
— Most straight-forward statistical assessment of results; probabilistic
assessment of ancestral character states
From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Disadvantages:

+ Parsimony methods:
No explicit model of evolution; often less efficient

Nonparametic statistical approaches for assessing results often
have poorly understood properties

Can provide misleading results under some fairly common
conditions

Do not provide probablistic assessment of alternative solutions

+ Distance methods:

Model of evolution applied locally (to pairs of taxa), rather than
globally

Statistical interpretation not straight-forward

Can provide misleading results under some fairly common
conditions (but not as sensitive as parsimony)

Do not provide probablistic assessment of alternative solutions
+ Likelihood/Bayesian:

— Requires an explicit model of evolution, which may not be
realistic or available for some data types

— Computationally most intense
From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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The Parsimony Criterion:

+ Under the parsimony criterion, the optimal tree
(the shortest or minimum length tree) is the one
that minimizes the sum of the lengths of all
characters in terms of evolutionary steps (a step
is a change from one character-state to another).

+ For a given tree, find the length of each
character, and sum these lengths; this is the tree
length.

* The tree with the minimum length is the most
parsimonious tree.

+ The most parsimonious tree provides the best fit
of the data set under the parsimony criterion.

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Parismony: ancestral states

Intersection: 0
t Union: +1

(cG}—>6G (orC)

(ACG}) —> A

{AcG} |1 ‘

Downpass (postorder traversal) Length=4
A < c G c G A A

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Parsimony — Informative sites
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Graur and Li,

2 T4 3A T4 4T A3
Chap 5, pp 190, 191 fasta.bioch.virginia.edu/biol4230

Parsimony — Informative sites
Paup analysis of 3000 sites from primate
mitochondrial D-loop

Character-status summary:
13203 characters are excluded (selected 1-3000)
Of the remaining 3000 included characters:
All characters are of type 'unord'
All characters have equal weight
2397 characters are constant
431 variable characters are parsimony-uninformative
Number of (included) parsimony-informative characters = 172
Gaps are treated as "missing"
Multistate taxa interpreted as uncertainty

Tree # 1 2 3 4 5 6 7 8 9 10
Length 748 787 749 752 792 787 792 789 789 789

172/3000 = 5.7% of data used to build tree

fasta.bioch.virginia.edu/biol4230




Parsimony — Informative sites
Paup analysis of 3000 sites from primate
mitochondrial D-loop

1 748 changes
30 . Homo sapiens
Pan troglodytes
Gorilla gorilla
233 164 Pongo pygmaeus
Hylobates lar

50 changes

2 787 changes
80

28 Homo sapiens
42 5 Pan troglodytes
211 Pongo pygmaeus
27 & Gorilla gorilla
Hylobates lar
50 changes
3 749 changes
25 1 Homo sapiens
88 106 Gorilla gorilla
= Pan troglodytes
168 Pongo pygmaeus

t
‘ Hylobates lar

50 changes

4 752 changes
57

0 gl]omo sapiens
22 Pan troglodytes
103 Gorilla gorilla
168 Pongo pygmaeus
Hylobates lar

50 changes

fasta.bioch.virginia.edu/biol4230

Parsimony — Informative sites

Character-status summary:
13203 characters are excluded (selected 1-3000)
Of the remaining 3000 included characters:
All characters are of type 'unord'’
All characters have equal weight
2397 characters are constant
431 variable characters are parsimony-uninformative
Number of (included) parsimony-informative characters = 172
Gaps are treated as "missing"
Multistate taxa interpreted as uncertainty

Tree # 1 2 3 4 5 6 7 8 9 10
Length 748 787 749 752 792 787 792 789 789 789
172/3000 = 5.7% of data used to build tree

94.3% of data "not informative"
95% identical??
25% identical??

fasta.bioch.virginia.edu/biol4230




Distance Methods

+ Parsimony methods ONLY see informative sites
— often 20% of the data or less
— uninformative sites have information:
+ uninformative because no change (short branches)
+ uninformative because lots of change (long
branches)
+ Distance methods look at ALL the data
— but simply construct pairwise distances
— must use "transformed" distance, which requires model

— trees that match pairwise distances need not have a
possible evolutionary path

fasta.bioch.virginia.edu/biol4230 13

Pairwise Distances

+ Distances summarize character differences
between objects (terminals, taxa).

+ Pairwise distances are computationally quick to
calculate.

+ Character differences cannot be recovered from
distances, because different combinations of
character states can yield the same distance (no
ancestral states).

+ Characters cannot be compared individually, as
in discrete character analyses.

+ The distances in a matrix are not independent of
each other, and errors are often compounded in
fitting distances to a tree.

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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Distance Methods

Characters (sites) proportional distances
Taxa 1 2 3 4 5 one | two | three | four
one A G (¢} G A one - 0.2 0.6 0.6
two A G C G T two - 0.4 0.8
three (¢} T (¢} G T three - 0.4
four (¢} T (¢} A A four -

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
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DNA transition probabilities — 1 PAM

0.99 0.001
0.001 0.008
a c g t
a 0.99 0.001 0.008 0.001 =1.0
c 0.001 0.99 0.001 0.008 =1.0
g 0.008 0.001 0.99 0.001 =1.0
t 0.001 0.008 0.001 0.99 =1.0

fasta.bioch.virginia.edu/biol4230 16




can also be calculated from
"instantaneous rate matrix Q"

Matrix multiples o(1) = oxp(tQ)

M*2={ PAM2

{0.980, 0.002, 0.016, 0.002},
{0.002, 0.980, 0.002, 0.016},
{0.016, 0.002, 0.980, 0.002}, M~100={ PAM 100
{0.002, 0.016, 0.002, 0.980}} {0.499, 0.083, 0.336, 0.083},
{0.083, 0.499, 0.083, 0.336},
. {0.336, 0.083, 0.499, 0.083},
M"5={ PAMS5 {0.083, 0.336, 0.083, 0.499}}
{0.952, 0.005, 0.038, 0.005},
{0.005, 0.951, 0.005, 0.038},
{0.038, 0.005, 0.952, 0.005},
{0.005, 0.038, 0.005, 0.952}} M~1000={ PAM 1000
{0.255, 0.245, 0.255, 0.245},
M*10={ PAM 10 {0.245, 0.255, 0.245, 0.255},
{0.907, 0.010, 0.073, 0.010}, {0.255, 0.245, 0.255, 0.245},
{0.010, 0.907, 0.010, 0.073}, {0.245, 0.255, 0.245, 0.255}}
{0.073, 0.010, 0.907, 0.010},
{0.010, 0.073, 0.010, 0.907}}
fasta.bioch.virginia.edu/biol4230 17
From differences to distance:
the Jukes-Cantor correction (DNA)
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Distance Methods

proportional distances

Characters (sites)

Taxa 1 2 3 4 5
one A G (¢} G A
two A G (¢} G T

three (¢} T (¢} G T
four (¢} T (¢} A A

fasta.bioch.virginia.edu/biol4230

one | two | three | four

one - 0.2 0.6 0.6

two - 0.4 0.8

three - 0.4
four -

corrected distances

one two | three | four

one - 0.21 | 0.63 | 0.63

two - 0.43 | 0.85

three - 0.42
four =

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

19

Distance Methods

three

four

proportional distances

best fit
corrected distances
one | two | three | four
one - 0.21 | 515 | .635
two - 515 | .635
three - .520
four -

fasta.bioch.virginia.edu/biol4230

one two | three | four
one - 0.2 0.6 0.6
two - 0.4 0.8
three - 0.4
four =
(estimated)
corrected distances
one two | three | four
one - 0.21 | 0.63 | 0.63
two - 0.43 | 0.85
three - 0.42
four -

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

20
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Pairwise distances: Optimality Criteria

« Two commonly used objective functions:
— Fitch-Margoliash
— Minimum Evolution

« The general strategy is to find a set of
patristic distances (path-length distances) for
the branches that minimize the difference
between the evolutionary distances and the
patristic distances.

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

fasta.bioch.virginia.edu/biol4230 21

Pairwise distances:

+ Fitch-Margoliash (minimize error):
no_j

: a
Fit=) Y o |d -p, |
ij'oij i,j
j=2 i=1

i =taxon i Common weights:
j=taxonj,upton w;j=1

d = evolutionary distance (from data) w; = 1/dy

p = patristic or tree distance (from fit) wy = 105

w = weight
Exponent a: 2 = least squares
1 = absolute difference

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

fasta.bioch.virginia.edu/biol4230 22




Pairwise distances:

« Minimum evolution (minimize tree length):

no_j
- o
Fit= Zza’u |di,j —b;; |
j=2 i=1
1. Use w=1and a=2 to fit branch lengths
2. Pick the tree that minimizes the sum of the
branches (Length of tree, similar to parsimony)

2n-3
L=Y1,
i=1

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

fasta.bioch.virginia.edu/biol4230 23

Distance:
Paup analysis of 3000 sites from primate
mitochondrial D-loop

Uncorrected 1 2 3 4 5

Hylobates -

Human 0.11182 -

Chimp 0.10851 0.05186 -

Gorilla 0.11422 0.06069 0.06136 -

Pongo 0.13056 0.10548 0.10414 0.10901 -

Corrected 1 2 3 4 5

Hylobates - 0.120941 0.117090 0.123937 0.143651

Human 0.120941 - 0.053528 0.063076 0.113246

Chimp 0.117090 0.053528 - 0.063769 0.111617

Gorilla 0.123937 0.063076 0.063769 - 0.117366

Pongo 0.143651 0.113246 0.111617 0.117366 -
fasta.bioch.virginia.edu/biol4230 24
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Distance:
Paup analysis of 3000 sites from primate
mitochondrial D-loop

1 2 3 4 5
Hylobates lar -
Homo sapiens 0.11182 -
Pan troglodytes 0.10851 0.05186 -
Gorilla gorilla 0.11422 0.06069 0.06136 -
Pongo pygmaeus 0.13056 0.10548 0.10414 0.10901 -

U W N

Heuristic search settings:
Optimality criterion = distance (unweighted least squares (power=0))
Negative branch lengths allowed, but set to zero for tree-score
calculation
Distance measure = uncorrected ("p")
3000 characters are included
Starting tree(s) obtained via neighbor-joining
Branch-swapping algorithm: tree-bisection-reconnection (TBR) with
reconnection limit = 8
Steepest descent option not in effect
Saving 5 best trees found by branch-swapping (on best trees only)
Trees are unrooted
Heuristic search completed
Total number of rearrangements tried = 12

Score of best tree(s) found = 3.9665e-06 (%SD=1.20072, g%SD=0.11499[k=7])

Number of trees retained = 5

fasta.bioch.virginia.edu/biol4230 25
Parsimony — Informative sites
Paup analysis of 3000 sites from primate
mitochondrial D-loop

1 748 changes
30 75 Homo sapiens
89 79 Pan troglodytes
7 Gorilla gorilla
283 164 Pongo pygmaeus
Hylobates lar
————— 50changes
2 787 changes
28 50 Homo sapiens
42 75 Pan troglodytes
21 Pongo pygmaeus
27. L Gorilla gorilla
Hylobates lar
50 changes
3 749 changes
25 = Homo sapiens
88 106 Gorilla gorilla
56 Pan troglodytes
T 268 Pongo pygmaeus
| Hylobates lar
50 changes
4 752 changes
0 57 Homo sapiens
22 £ Pan troglodytes
103 Gorilla gorilla
168 Pongo pygmaeus
Hylobates lar
50 changes
fasta.bioch.virginia.edu/biol4230 26
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Distance:
Paup analysis of 3000 sites from primate
mitochondrial D-loop

1 ss=4E-6

0.00f Homo sapiens

0.014 Pan troglodytes

Gorilla gorilla
0.063 Pongo pygmaeus
Hylobates lar
0.01 substitutions/site
2 $s=54E-6
0.009 0027 Homo sapiens
-0.007 L ows Pan troglodytes
0.070 Pongo pygmaeus
0.077 0,057 Gorilla gorilla
Hylobates lar
0.01 substitutions/site
3 ss=15E-6
+ Homo sapiens
0.015 £.033 Gorilla gorilla
L 00  pantroglodytes
0.08¢ 0.063 Pongo pygmaeus
Hylobates lar
0.01 substitutions/site
4 ss=40E-6
0.028

Homo sapiens
0.015
K voqz—o.om Pan troglodytes
0.0%4 Gorilla gorilla
o. 0.063 Pongo pygmaeus

Hylobates lar

0.01 substitutions/site

fasta.bioch.virginia.edu/biol4230 27

Distance defined by an algorithm

+ UPGMA — Unweighted Pair Group Mean Arithmetic

A () A (c) A
B
e
damc
1

D

(@)

dapa FIGURE 511 (a) The true phylogenetic tree. (b) The erroneous phylogenetic tree
N reconstructed by using UPGMA, which does not take into account the possibility
FIGURE 5,10 Diagram i the stepwise on of a tree of unequal substitution rates along the different branches. (c) The tree inferred by
for four OTUs by using UPGMA (see text). the transformed distance method. The root must be on the branch connecting OTU
D and the node of the common ancestor of OTUs A, B, and C, but its exact location
cannot be determined by the transformed distance method.

— strongly assumes clock-like tree Li and Graur,
* Neighbor-Joining — - p. 184,185

Wikipedia

fasta.bioch.virginia.edu/biol4230 28
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Parsimony vs Distance — a data set

A:
B:
D:
A B C D
A 0 6 3 4
B 0 4 2
C 0 2
D 0
| Are there ancestral nodes with correct distances? |
fasta.bioch.virginia.edu/biol4230 29
Parsimony solutions
gtgttc A B taccgt
A: gtgttc -—tgt-- N3 4+ /0 _____ &
B: taccgt
C: gacatc gacatc taccgce
D: tagege 2 N - g-—-
gacatc C D tagcgc
gtgttc A B taccgt
—t-—-- ---cgt
gagttc tacttc
2
t--cg- 11 total g--a--
tagcge D C gacatc
fasta.bioch.virginia.edu/biol4230 30
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o Qww

Distance solution

gtgttc gtgttc A B taccgt

taccgt
gacatc
tagcgc

o
o o W
o B WA
oNn N RO

fasta.bioch.virginia.edu/biol4230

gacatc C D tagcgc

31

Likelihood/Bayesian methods

+ Parsimony methods ONLY see informative sites
— often 20% of the data or less
— uninformative sites have information:
+ uninformative because no change (short branches)
+ uninformative because lots of change (long branches)
+ Distance methods look at ALL the data
— but simply construct pairwise distances
— must use "transformed" distance, which requires model
— trees that match pairwise distances need not have a
possible evolutionary path
+ Maximum likelihood methods look at ALL the data
follow evolution along individual sites (columns)
also requires a model for evolutionary change
probabilities of ancestors at internal nodes
much slower

fasta.bioch.virginia.edu/biol4230
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Likelihood/Bayesian methods

+ Parsimony methods ONLY see informative sites
— often 20% of the data or less
— uninformative sites have information:
+ uninformative because no change (short branches)
+ uninformative because lots of change (long branches)
+ Distance methods look at ALL the data
— but simply construct pairwise distances
— must use "transformed" distance, which requires model

— trees that match pairwise distances need not have a
possible evolutionary path

+ Maximum likelihood methods look at ALL the data
— follow evolution along individual sites (columns)
— also requires a model for evolutionary change
— probabilities of ancestors at internal nodes
— much slower

fasta.bioch.virginia.edu/biol4230 33

What is Likelihood?

+ Have a coin, flip n times, getting h heads. This is the
data D

+ We can explore various hypotheses about the coin,
which may have explicit and implicit components:

The coin has a p(H) probability of landing on heads

The coin has a heads and tails side

Successive coin flips are independent

Flipping is fair

+ (Maximum) likelihood is a strategy for finding the
most likely hypothesis, given the data

+ Itis completely data driven, so HH implies p(H)=1.0,
but happens 25% of the time with p(H)=0.5

L = p(H | D) From Hillis lecture:

www.doublehelixranch.com/WoodsHoleMole2014.pdf

fasta.bioch.virginia.edu/biol4230 34
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Coin flipping

The likelihood (L) is proportional to the probability of
observing our data, given our hypothesis:

L(HI D) < P(D| H)

The probability of getting the outcome h heads on n flips is
given by the binomial distribution:

P(h,n|p,,)=[2}(ph)h(1—ph)""'

+ The combinatorial term gives the binomial coefficients, for
the number of ways to get 4 heads in 10 flips

We will ignore that term and look at a particular sequence
of H's and T's (more like a specific sequence of
nucleotides)

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
fasta.bioch.virginia.edu/biol4230 35

Coin flipping

- Let's apply likelihood to specific data:

— Dataset 1: A particular run of tosses
HTTHTTHTTH

« Assume a hypothesis, p,=0.5

+ This gives a likelihood score of:
L(p,=0.5|obs)= (0.5)*(1-0.5)*=0.000976563
From Hillis lecture:

www.doublehelixranch.com/WoodsHoleMole2014.pdf
fasta.bioch.virginia.edu/biol4230 36
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Coin flipping

+ What does the likelihood score tell us about the
likelihood of our hypothesis? In isolation, nothing,
because the score is dependent on the particular
data set. The score will get smaller as we collect
more data (flip the coin more times).

+ Only the relative likelihood scores for various
hypotheses, evaluated using the same data, are
useful to us.

+ What are some other models?
L(p, =0.6lobs)=(0.6)%(0.4)¢ =0.000530842
L(p, =0.4lobs)=(0.4)*(0.6)¢ =0.001194394

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf
fasta.bioch.virginia.edu/biol4230 37

likelihood

The likelihood surface

« p(HTTHTTHTTH) p(HTTHTTHTTH)
S
=)
o o
o | T
=} °
8 8w |
=} £
< | k)
S 5 & 4
=} kel
o

_ 0
o AN 7
=1 )
o |
g T T T T T T T T T T T T

00 02 04 06 08 1.0 00 02 04 06 08 1.0

p(H) p(H)
log() is In()
In(20)~3
fasta.bioch.virginia.edu/biol4230 38
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Likelihood

+ Likelihood (HID) is proportional to P(DIH)

+ Components of the hypothesis can be explicit
and implicit

+ Only relative likelihoods are important in
evaluating hypotheses

+ The point on the likelihood curve that maximizes
the likelihood score (the MLE) is our best
estimate given the data at hand

+ Likelihood scores shouldn’t be compared
between datasets

+ More data lead to more peaked surfaces (i.e.,
better ability to discriminate among hypotheses)

From Hillis lecture:
www.doublehelixranch.com/WoodsHoleMole2014.pdf

fasta.bioch.virginia.edu/biol4230 39
Likelihood
© 4H/6T
8H/M12T

8 B 24H/26T
IS |
)
= 50H/50T
> 3
o i 7]

o

o |

|

00 02 04 06 08 1.0
p(H)

fasta.bioch.virginia.edu/biol4230 40
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Likelihood in Phylogenetics

+ In phylogenetics, the data are the observed
characters (e.g., DNA sequences) as they

are distributed across taxa

The hypothesis consists of the tree topology,

a set of specified branch lengths, and an
explicit model of character evolution.

Calculating the likelihood score for a tree

requires a very large number of calculations

From Hillis lecture:

www.doublehelixranch.com/WoodsHoleMole2014.pdf

fasta.bioch.virginia.edu/biol4230
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Likelihood in Phylogenetics

@ 12 3 45 6 7 8 9 ..n
Ofutl AA GACTTCA ..N n
OM2 AG CCCTTGCT ...N
OTUB AG ATATTCCA ..N L=L XL XL_X..XL =I|L
OTl4 AG AGGTCCT ..N (€3] (2) (3) (n) ] Q)]
i=
(b) OTU1 oru3

OTU: OTU4
© Vit UrvuLUIn v s
C A C A C A
N,a” A Ny’ N’
L(s)=Prob A=A + Prob A—C + Prob A=T + Prob A—G!
(C/ \G) (C/ \G) (C/ No (C/ \G)
(d A C A C A C A
Nen” Ne—e”” Ne—r” Neo”
+ Prob C—A. + Prob C—C + Prob C—T + Prob C—G:
(c/ AN G) (c/ N\, c) ( C/ \G) (c/ AN c)
C, A C, A C A C A
Ni_a” Np_e”” N ” Ni_o”
+ Prob T—A. + Prob T—C + Prob T—T + Prob T—G.
(C/ \G) (c/ \G) (C/ \G) (C/ \G)
C A C A C A C A
Nen” Ne—e”” Neop”” N’
+ Prob G—A + Prob G—C + Prob G—T + Prob G—G:
(c/ \c) (c/ \G) (c/ \G) (C/ \G)

fasta.bioch.virginia.edu/biol4230

Vil In(L)=In(L, )+..+In(L, )= Zln(Lm)
HTG& =1
2

* One tree topology

16 ancestral states
at HTU5/HTUG6
(4x4)

* What about branch

lengths?

42
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Model-based methods (Likelihood)

The transition probabilities along each branch are
calculated from a model of change with time
0. 00

0.0p1 008

Many models, from simple (JC69) to very complex (3
transition rates, 3 base compositions)

— Jukes-Cantor (JC69) p(N=N) = 34(1-exp(-4d/3))

— Felsenstein81 (F81)

— Kimura80 (K80)

— Hasegawa-Kishino-Yano, 85 (HKY85)

"d" (distance) = time x rate of change; constant along
branch for all sites — looking at ALL the data

— allow models with different rates for different codon positions

fasta.bioch.virginia.edu/biol4230 43

Parsimony vs Maximum Likelihood — a data set

A: a
B: N taa A 0 , 5 Ccgg taa A 3 Baat
C: taa ggc taa 3 gge
: 9 2 0 4
D: c aat B D ggc cggC D ggc
t = transition (A/G,C/T) taa A
T=transversion aa o1 ,Cc99 taa A B aat
= not(transition) taa 2T+1t ggc taa 2T+1t ggc
p(t) = p(T) 2T at
aat B D ggc cgg C D ggc
cost: 6T + 1t cost: 2T + 7t
pt)=p(T): 7T p(t)=p(T): 9T
p(t)=0.5p(T): 6.5T p(t)=0.5p(T): 5.5T
fasta.bioch.virginia.edu/biol4230 44
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Maximum Likelihood
Paup analysis of 3000 sites from primate
mitochondrial D-loop

3000 characters are included
Likelihood settings:
Current model:
Data type = nucleotide
Substitution types = 2 (HKY85 variant)
Ti/tv ratio = 2
State frequencies = empirical: A=0.33701 C=0.27103 G=0.17279 T=0.21917
Proportion of invariable sites = none
Rates at variable sites = equal
Model correspondence = HKY85
Number of distinct data patterns under this model = 140
Molecular clock not enforced
Starting branch lengths obtained using Rogers-Swofford approximation method
Branch-length optimization = one-dimensional Newton-Raphson Likelihood
calculations performed in single precision
Vector processing enabled
Conditional-likelihood rescaling threshold = le-20
Using 1 thread on 4 physical (8 logical) processors

Tree 1 2 3 4 5
-ln L 7563.309 7614.123 7566.153 7570.346 7614.714
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Maximum Likelihood
Paup analysis of 3000 sites from primate
mitochondrial D-loop

0.027

1 -In(L)=7563

Homo sapiens

Pan troglodytes

Gorilla gorilla

Pongo pygmaeus
Hylobates lar

0.006

0.05 st
2 -In(L)=7624
0.006 0.027 Homo sapiens
Pan troglodytes
00 Pongo pygmaeus
Gorilla gorilla
Hylobates lar
0.05 1s/sit
3 -In(L)=7566
0.026

Homo sapiens
Gorilla gorilla

0.006
0025 0.038

Pan troglodytes
Pongo pygmaeus
Hylobates lar

4 -In(L)=7570

0.026 Homo sapiens
Pan troglodytes
Gorilla gorilla
Pongo pygmaeus
Hylobates lar

0.05 st
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Criteria for estimating trees

+ Parsimony methods ONLY see informative sites
— often 20% of the data or less
— uninformative sites have information:
+ uninformative because no change (short branches)
+ uninformative because lots of change (long branches)
+ Distance methods look at ALL the data
— but simply construct pairwise distances
— must use "transformed" distance, which requires model
— trees that match pairwise distances need not have a
possible evolutionary path
+ Maximum likelihood methods look at ALL the data
follow evolution along individual sites (columns)
also requires a model for evolutionary change
probabilities of ancestors at internal nodes
much slower

fasta.bioch.virginia.edu/biol4230
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