The 'R' statistics environment

Biol4230 Thurs, March 39, 2018
Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057

A quick introduction to 'R’
— Variable types:

vector=c(0,1,2,3),

matl = matrix(vector,nrow=2) (or ncol=2)

dframel = data.frame(ved=vector,

vecx2= vector*2, vecsqg=vector**2)
— Input:
read.table("filename",header=TRUE, sep="\t")

— Output:

plot(), hist(), boxplot()
— Running 'R' ('R'-studio)

fasta.bioch.virginia.edu/biol4230

To learn more:

1. An introduction to 'R":
cran.r-project.org/doc/manuals/R-intro.pdf

2. A'short" introduction:
cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf

3. Introducing 'R":
http://data.princeton.edu/R/introducingR.pdf

4. A different introductory lecture on 'R' (that | borrow from):

http://www.stat.cmu.edu/~cshalizi/statcomp/13/lectures/01--
02/lecture-01--02.pdf

fasta.bioch.virginia.edu/biol4230

mailto:wrp@virginia.edu

Why 'R'?

+ Open source, statistical programming
environment based on 'S' (Bell Labs statistical
programming environment)

— plotting functions, statistical distributions,
summary statistics, linear models, etc., etc.

+ Universally used for functional bioinformatics
(Bioconductor)

+ The standard platform for new statistical
development (false discovery rate fdr/qvalue)

+ Tools for program
documentation/reproducibility (knitr)

+ 'R' analyses on the WWW (shiny)

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — functional programming

Python is an object oriented "procedural" language. You specify in some detail how
to read data into variables, which are then iterated on, or transformed in some way,
or used to automate a task.

'R'is a functional language. In some sense, everything in 'R' happens to a vector.

Thus, in Python, to make square all the values in a vector (array), you might write:
>>> array = [1, 2, 3, 4, 5]
array = [1, 2, 3, 4, 5]
>>> [x * x for x in array]
[1, 4, 9, 16, 25]
>>> [2 * x for x in array]
[2, 4, 6, 8, 10]

in 'R"

> vector <- 1:4
> vector

[1] 1234

> vector**2

[1] 1 4 916
> 2*vector

[11 2 4 638

while there are 'for()' loops and 'if/then/else' conditionals in 'R', you will almost never

need them to use 'R'. You will need to define functions, and use "apply()" to apply a
function to the values in a vector

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — data types

+ data types:
— numbers: 1, 1.0, 12.345

numbers are always double precision floating point
unless forced to integer with as.integer()
— boolean: TRUE, FALSE
boolean values can be used to retrieve entries in vectors
> vil<-1:10
> vl
[11 1 2 3 4 5 6 7 8 910
> vi<4
[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> vl[vl < 4]
(11123
— characters: "Jane", "pre-cancerous"
— NaN, NA - special no-data types

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — variable types

+ Variable types:
— vectors[] :arrays of the same type (number, string)
vl <- ¢(1,2,3,4)
v1l2 <- c(vl,vl) -=> 1 2 3 4 12 3 4 # c() "flattens"
v2 <- 1:9
v3 <- seq(l1l,5,0.1)
— matrices[2,3] :arrays of arrays (of arrays), multi-dimensional

matl <- matrix(1l:9, nrow=3) mat2 <- matrix(1l:9,nrow=3,byrow=TRUE)
matl mat2
(»11 [,21 [,3] [,11 [,2] [,3]
[1,1 1 4 7 (1,1 1 2 3
(2,1 2 5 8 (2, 4 5 6
[3,1 3 6 9

[3,1 7 8 9

— lists[] :array that can have different types, including vectors and
lists, has named entries (like dictionary)

— data.frame[] :like a matrix with named columns (like dictionary),
can contain different types

fasta.bioch.virginia.edu/biol4230 6

Introduction to 'R' — vector subsets

Selecting and sub-selecting data: vectors

+ sub-part of vectors can be selected with vectors of indices
> vl <- ¢(l.1, 2.2, 4.3, 3.4, 5.5)

> vl[2 , 3]

Error in v1[2, 3] : incorrect number of dimensions

> vl[c(2,3)] # indices must be in vector

[1] 2.2 4.3

> vl[c(2,4,3)] # indices can re-order

[1] 2.2 3.4 4.3

> vl[-c(2,3)] # negative index deletes selection (cannot combine)
[1] 1.1 3.4 5.5

> vl[order(vl)] # the order() function returns the indexes to sort

[1] 1.1 2.2 3.4 4.3 5.5

+ sub-parts of vectors can be selected using booleans (TRUE, FALSE)
> vl <- 1:10
> vl
[1] 1 2 3 4 5 6 7 8 910
> vl <=5
[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
> vl[vl<=5]
[11] 12345
> vl $%2 ==
[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
> v1[v1%%2==0]
[1] 2 4 6 810

+ in all of these examples, sub-setting a vector returned a vector.

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — matrix subsets

+ Selecting and sub-selecting data: matrices

> matl <- matrix(1l:12, nrow=3)

> matl
[,11 [,21[[,3] [,4]
[1,1 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> matl[2,] # select all columns from one row
[11] 2 5 811
> matl[,4] # select all rows from one column

[1] 10 11 12

> matl[,4]**2 # compute on resulting vector

[1] 100 121 144

> matl[l:2, 3:4] # for matrices, vectors select entries
[,11 [,2]

(1,1 7 10

(2,1 8 11

> matl[c(3, 1),c(3,1,2,4)]
[,11 [,2] [,3] [,4]

[1,1 9 3 6 12

(2,1 7 1 4 10

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — variable types

+ Selecting and sub-selecting data: matrices
> matl <- matrix(1:12, nrow=3)

> matl

[,11 [,2] [,3] [,4]
[1,1 1 4 7 10
[2,] 2 5 8 11
[3,1 3 6 9 12

> matl[matl[2,]>=5,]
Error in matl[matl[2,]>=5,](subscript)logical subscript
too long
matl[2,]>=5
[1] FALSE TRUE TRUE TRUE
> matl[,matl[2,]>=5] # rows,columns where row=2 entry > 5
[,11 [,2] [.3]
4 7 10

[1,1]

[2,] 5 8 11

[3,] 6 9 12

> matl[,matl[,2]<5] # wrong (too short) but no error.
[,1]1 [,2] # Vector extended from c(T,F,F) to

[1,] 1 10 # c(T,F,F,T) by concatenation

[2,] 2 11

[3,] 3 12

> matl[matl[,2]<5,]

[1] 1 4 7 10

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — data.frames

data.frames are tables (arrays) with different types,
typically with labeled columns

head (GSE_FPKM)

Gene MCF.7_Repl MCF.7_Rep2 MCF.7_Rep3 GM12892 Repl GM12892_ Rep2 GM12892_Rep3

1/2-SBSRNA4 0.54253200 0.318766 0.2925300 0.268225 0.50125500 0.4364100
A1BG 0.75134200 1.080660 1.3224700 2.389740 0.42191900 0.5300680
A1BG-AS1 0.90314900 0.549146 1.5402100 0.701192 0.12630800 0.6629410
AICF 0.00176153 0.000000 0.0000000 0.000000 0.00385721 0.0000000

A2LD1 1.37068000 1.040530 1.1445600 2.341310 2.41900000 1.8365700

A2M 0.00716990 1.435170 0.0510643 0.137600 0.03139180 0.0299176

typically, columns of the data are extracted by name
(GSE_FPKM$MCF.7_Repl) as vectors, but they can also be extracted by
index (GSE_FPKM[2])

data.frames can be reordered, selected and sub-setted just like matrices

> head(GSE_FPKM[order (GSE_FPKM$MCF.7_Repl,decreasing=TRUE),])

Gene MCF.7_Repl MCF.7 Rep2 MCF.7 Rep3 GM12892 Repl GM12892 Rep2 GM12892 Rep3

17769 RPL41 9479.40 5999.73 8669.86 8774.13 5197.96 4536.55
17833 RPS29 6909.02 3113.50 3847.84 10579.00 7282.94 5614.69
17829 RPS27 5281.44 2321.00 2883.32 10689.70 9748.79 7855.76
17765 RPL39 5217.51 2396.75 2294.83 6122.56 5146.11 4554.45

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — variables

+ to see what is in a variable, use: str()

> str(vl)

num [1:5] 1.1 2.2 4.3 3.4 5.5
> str(matl)

int [1:3, 1:4] 1 23 4567 89 10 ...
> str(GSE_FPKM)

'data.frame’: 23197 obs. of 11 variables:

$ Gene : Factor w/ 21648 levels "1/2-SBSRNA4",..: 1 2 3 4 56 7 8
9 10 ...

$ MCF.7_Repl : num 0.54253 0.75134 0.90315 0.00176 1.37068 ...
$ MCF.7 Rep2 : num 0.319 1.081 0.549 0 1.041 ...

$ MCF.7_Rep3 : num 0.293 1.322 1.54 0 1.145 ...

$ GM12892_Repl: num 0.268 2.39 0.701 0 2.341 ...

$ GM12892 Rep2: num 0.50126 0.42192 0.12631 0.00386 2.419 ...

$ GM12892 Rep3: num 0.436 0.53 0.663 0 1.837 ...

$ H1.hESC_Repl: num 0.6699 2.43029 0.42874 0.00798 0.40421 ...
$ H1.hESC_Rep2: num 0.60306 2.65009 0.37343 0.00259 0.68117 ...
$ H1.hESC_Rep3: num 0.54942 2.23051 0.44545 0.00536 0.50608 ...
$ H1.hESC_Rep4: num 0.4247 1.199 0.5754 0.0125 0.6244 ...

fasta.bioch.virginia.edu/biol4230

Introduction to 'R' — variables

+ to see what is in a variable, use: summary()

> summary(vl)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.1 2.2 3.4 3.3 4.3 5.5
> summary(matl)
Vi v2 v3 V4
Min. :1.0 Min. :4.0 Min. :7.0 Min. :10.0
1st Qu.:1.5 1st Qu.:4.5 1st Qu.:7.5 1st Qu.:10.5
Median :2.0 Median :5.0 Median :8.0 Median :11.0
Mean 2.0 Mean :5.0 Mean :8.0 Mean :11.0
3rd Qu.:2.5 3rd Qu.:5.5 3rd Qu.:8.5 3rd Qu.:11.5
Max. :3.0 Max. :6.0 Max. :9.0 Max. :12.0
> summary (GSE_FPKM)
Gene MCF.7_Repl MCF.7_Rep2 MCF.7_Rep3
DUX2 : 17 Min. : 0.000 Min. : 0.000 Min. : 0.000
DUX4 : 13 1st Qu.: 0.009 1st Qu.: 0.000 1st Qu.: 0.005
DUX4L2 : 12 Median : 1.103 Median : 0.882 Median : 0.875
REXO1L2P: 10 Mean s 22.062 Mean H 23.801 Mean : 22.559
STK19 : 10 3rd Qu.: 9.433 3rd Qu.: 9.195 3rd Qu.: 8.305
TNXB : 10 Max. :9479.400 Max. :14997.700 Max. :8669.860

(Other) :23125

fasta.bioch.virginia.edu/biol4230

Reading in datasets (data.frame()s)

- for tab delimited files with headers:

Gene MCF-7_Repl MCF-7_Rep2 MCF-7_Rep3
1/2-SB 0.542532 0.318766 0.29253

A1BG 0.751342 1.08066 1.32247

A1BG- 0.903149 0.549146 1.54021 0.701192

+ you can read directly into a data.frame[] with read.table():
> GSE_FPKM <- read.table('GSE49712_ ENCODE_FPKM.txt', header=TRUE, sep="\t")
> head(GSE_FPKM)
Gene MCF.7_Repl MCF.7_Rep2 MCF.7_Rep3 GM12892_ Repl GM12892 Rep2 GM12892_Rep3

1 1/2-SBSRNA4 0.54253200 0.318766 0.2925300 0.268225 0.50125500 0.4364100
2 A1BG 0.75134200 1.080660 1.3224700 2.389740 0.42191900 0.5300680
3 AlBG-AS1 0.90314900 0.549146 1.5402100 0.701192 0.12630800 0.6629410
4 AICF 0.00176153 0.000000 0.0000000 0.000000 0.00385721 0.0000000
5 A2LD1 1.37068000 1.040530 1.1445600 2.341310 2.41900000 1.8365700
6 A2M 0.00716990 1.435170 0.0510643 0.137600 0.03139180 0.0299176

+ If every column is not labeled, you may get an error:
Error in read.table("GSE49712_ENCODE_FPKM.txt", header = TRUE, sep = "\t") :
duplicate 'row.names' are not allowed
+ If you do not have a header, you can provide names:
> fpe = read.table("noheader.dat",

+ col.names=c("setting","effort","change")) # + for continuation

fasta.bioch.virginia.edu/biol4230 13

Plotting data

One of the great strengths of 'R’ is its ability to plot data in many
different ways (this is also why you will be running it on your laptop,
rather than on interactive.hpc from the command line)

+ X-y plots : plot(x-vector, y-vector)

> high_samps <- GSE_FPKM$MCF.7_Repl > 100
> plot (MCF.7_Repl[high samps], MCF.7_Rep2[high_ samps],log="xy")

p2[high_samps)
000 10000

L

MCF.7_Re|

100

100 200 500 1000 2000 5000 10000

MCF.7_Rep1[high_samps]

fasta.bioch.virginia.edu/biol4230 14

Plotting data

histograms: hist(vector)
> hist(log(MCF.7_Repl[MCF.7_Repl > 10]))

1500

Frequency

500

Histogram of log(MCF.7_Rep1[MCF.7_Rep1 > 10])

1000

l[l¥;x,.‘

2 4 6 8

log(MCF.7_Rep1[MCF.7_Rep1 > 10])

fasta.bioch.virginia.edu/biol4230

Plotting data

boxplots boxplot(vector1, vector2, vector3)
> boxplot(log(GSE_FPKM[GSE_FPKM[2:4]>100,2:4]))

10

© @O @ @0

MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3

fasta.bioch.virginia.edu/biol4230

'R' functions

Functions may have arguments specified or unspecified when the function is defined

+ There may be an arbitrary number of unspecified arguments

+ Unspecified arguments denoted by ...

+ Specified arguments may be supplied in the same order in which they occurred in the
function definition

+ Specified arguments may be supplied as name=value in which case their order is not
important

> help(t.test) # if you know the name of the R built in function, you can use help()
> x = rnorm(10) # 10 numbers randomly drawn from a normal distribution; x ~ N(0, 1)
>y = rnorm(10) # 10 numbers randomly drawn from a normal distribution; y ~ N(0, 1)
> t.test(x, y, "greater") # arguments in same order in which they are defined in function
> t.test(x=x, alternative="greater", y=y) # argument names specified but in wrong order
Welch Two Sample t-test data: x and y
t = 1.1862, df = 16.896, p-value = 0.1260 alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:
-0.2838161 Inf
sample estimates:
mean of x mean of y
0.02149336 -0.58618035

fasta.bioch.virginia.edu/biol4230 17

'R' functions

The R Base Package (so many functions; indexed by alphabet!)
stat.ethz.ch/R-manual/R-patched/library/base/html/00Index.html
Basic functions that come with your installation of R
— mean(); sum(); median(); quantile(); max(); min(); range();
— abs(); sign(); log(); logl0(), sqrt(); exp(); sin(); cos();
tan(); sinh(); tanh()
— sort(); order(); rev();
— duplicated(); unique();
— seq(); rep();
— round(); trunc(), floor(); ceiling()
— cat(); paste(); substring(); grep()
— merge(); cbind(); rbind()
Contributed Packages: Currently, the CRAN package repository has more than 1700
packages:
cran.r-project.org/web/packages/

Specialized packages implementing the latest methods developed in computational
statistics.

Use help() for assistance on usage!

fasta.bioch.virginia.edu/biol4230 18

'R' functions — apply()

The apply() function allows you to apply functions, like mean() or var(), which
apply to a vector, to a row (or row subset) of a matrix or data.frame.

> GSE_FPRM[11:15,2:4]

MCF.7_Repl MCF.7 Rep2 MCF.7_Rep3
11 0.000000 0.0000 0.0000000
12 0.014162 0.0000 0.0000000
13 29.783700 23.1135 38.1064000
14 20.810500 21.7803 32.8547000
15 0.104898 0.0000 0.0610452

> var FPKM[13,2:4]) # does

Repl MCF.7

work — should report one variance per row
MCF.7_Rep3
NA NA
A NA
NA

MCF.7_Repl
MCF.7_Rep2
MCF.7_Re;

> apply(GSE_FPKM[13,2:4],1,var) # does work — variance of row 13 is 56.42433

13
56.42433
> apply(GSE_FPKM[11:15,2:4],1,var) # five rows, five variances

11 12 13 14 15
0.000000e+00 6.685408e-05 5.642433e+01 4.477427e+01 2.775529e-03

fasta.bioch.virginia.edu/biol4230 19

'R' examples — expression analysis 2

rn.0<-rnorm(4, mean=1.0, sd=1.0)

rn.l<-rnorm(4, mean=1.0, sd=1.0)

rn.2<-rnorm(4, mean=1.0, sd=1.0)

rnb.0<-rnorm(4, mean=2.0, sd=1.0)

rnb.l<-rnorm(4, mean=2.0, sd=1.0)

rnb.2<-rnorm(4, mean=2.0, sd=1.0)

boxplot(rn.0, rnb.0, rn.1l, rnb.l1l, rn.2, rnb.2,
horizontal=TRUE,
border=c("red","blue","red","blue","red", "blue"),

names=c("rn","rnb","","","",

t.test(rn.0, rnb.0)
t.test(rn.1l, rnb.1l)
t.test(rn.2, rnb.2)
t.test(c(rn.0,rn.1,rn.2),c(rnb.0,rnb.1,rnb.2))

fasta.bioch.virginia.edu/biol4230 20

10

'R" examples — expression boxplot()

rnb
|

fasta.bioch.virginia.edu/biol4230 21
1 1
R' examples — t.test()
> t.test(rn.0, rnb.0)
Welch Two Sample t-test
data: rn.0 and rnb.0
t = 0.48598, df = 5.0367, p-value = 0.6474
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.637706 2.403365
sample estimates:
mean of x mean of y
1.832011 1.449182
> t.test(rn.l, rnb.1l)
Welch Two Sample t-test
data: rn.l and rnb.1l
t = -2.5994, df = 5.8732, p-value = 0.0415
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.01521343 -0.08321807
sample estimates:
mean of x mean of y
0.5727129 2.1219286
fasta.bioch.virginia.edu/biol4230 22

11

'R' examples — p.adjust()

nreps <- 4 # number of replicates
ngenes <- 20000
ngenes0 <- 15000
ngenesl <- 3000
ngenes2 <- 1500
ngenes3 <- 500

data0 <- matrix(rnorm(ngenes*nreps, mean=1, sd=0.3), nrow=ngenes)
datal <- matrix(rnorm(ngenes*nreps, mean=1, sd=0.3), nrow=ngenes)

diff0 <- matrix(rnorm(ngenesO*nreps, mean=1.0, sd=0.3), nrow=ngenes0)
diffl <- matrix(rnorm(ngenesl*nreps, mean=1.5, sd=0.4), nrow=ngenesl)
diff2 <- matrix(rnorm(ngenes2*nreps, mean= 10, sd=3.0), nrow=ngenes2)
diff3 <- matrix(rnorm(ngenes3*nreps, mean=100, sd=10.0), nrow=ngenes3)

no_change <- cbind(data0, datal) # 8 colums, 1:4 data0, 5:8 datal
mix_change <- cbind(data0, rbind(diff0,diffl,diff2,diff3)) # put the data together

nc_pvals <- matrix(apply(no_change, 1, function(x) {
t.test(x[1:4], x[5:8])$p.value
}), nrow=200)

mix_pvals <- matrix(apply(mix_change, 1, function(x) {
t.test(x[1:4], x[5:8])Sp.value
}), nrow=200)

mix_bon <- matrix(p.adjust(mix_pvals, "bonferroni"), nrow=200)
mix_gvals <- matrix(p.adjust(mix_pvals, "fdr"), nrow=200)

image(nc_pvals < 0.05, axes=F, main="No change, p < 0.05")

image(mix_pvals < 0.05, axes=F, main="Mixed change, p < 0.05")
image(mix bon < 0.05, axes=F, main="Mixed change, p < 0. 05/20K (Bonferroni)")
image(mix_qgvals < 0.05, axes=F, main="Mixed change, q < 0.0

sum(nc_pvals < 0.05) # 817 in last simulation
sum(mix_pvals < 0.05) # 3617 in last simulation
sum(mix_gvals < 0.05) # 1035 in last simulation

fasta.bioch.virginia.edu/biol4230 23
'R’ mpl djust
examples — p.adjus
p.adjust {stats}R Documentation
Adjust P-values for Multiple Comparisons
Description
Given a set of p-values, returns p-values adjusted using one of several methods.
Usage
p.adjust(p, method = p.adjust.methods, n = length(p))
p.adjust.methods
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none")
Arguments
p numeric vector of p-values (possibly with NAs). Any other R is coerced by as.numeric
method correction method. Can be abbreviated.
n number of comparisons, must be at least length(p); only set this (to non-default) when you know what you
are doing!
Details
The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-values are multiplied by the number
of comparisons. Less conservative corrections are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"),
Hommel (1988) ("hommel"), Benjamini & Hochberg (1995) ("BH" or its alias "fdr"), and Benjamini & Yekutieli (2001) ("BY"),
respectively. A pass-through option ("none") is also included. The set of methods are contained in the p.adjust. methods
vector for the benefit of methods that need to have the method as an option and pass it on to p.adjust.
The first four methods are designed to give strong control of the family-wise error rate. There seems no reason to use the
unmodified Bonferroni correction because it is dominated by Holm's method, which is also valid under arbitrary
assumptions.
Hochberg's and Hommel's methods are valid when the hypothesis tests are independent or when they are non-negatively
associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel's method is more powerful than Hochberg's, but the
difference is usually small and the Hochberg p-values are faster to compute.
The "BH" (aka "fdr") and "BY" method of Benjamini, Hochberg, and Yekutieli control the false discovery rate, the expected
proportion of false discoveries amongst the rejected hypotheses. The false discovery rate is a less stringent condition than
the family-wise error rate, so these methods are more powerful than the others.
fasta.bioch.virginia.edu/biol4230 24

12

'R! examples - padJUSt()

No change, p <0.05 Mixed change, p < 0.05

Mixed change, p < 0.05/20K (Bonferroni) Mixed change, q < 0.05

fasta.bioch.virginia.edu/biol4230

25

Introduction to 'R’

+ 'R'works on vectors, matrices, and data.frames()
+ subsets of vectors/matrices/data.frames can be
specified:
— vectors of indices (c(4,3,1,2), order(v1))
— boolean vectors ($rep1>10 & rep2 > 10)
— [,1:3] : all rows, columns 1:3
— [1:4,] : all columns, rows 1:4
+ columns of data.frames() can be named or
indexed
+ read.table()

*+ plot, hist, boxplot

fasta.bioch.virginia.edu/biol4230

26

13

