
1

The 'R' statistics environment

• A quick introduction to 'R'
– Variable types:

vector=c(0,1,2,3),

mat1 = matrix(vector,nrow=2) (or ncol=2)

dframe1 = data.frame(ved=vector,

vecx2= vector*2, vecsq=vector**2)

– Input:
read.table("filename",header=TRUE,sep="\t")

– Output:
plot(), hist(), boxplot()

– Running 'R' ('R'-studio)

Biol4230 Thurs, March 39, 2018
Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057

fasta.bioch.virginia.edu/biol4230 1

To learn more:
1. An introduction to 'R':

cran.r-project.org/doc/manuals/R-intro.pdf
2. A "short" introduction:

cran.r-project.org/doc/contrib/Torfs+Brauer-Short-R-Intro.pdf
3. Introducing 'R':

http://data.princeton.edu/R/introducingR.pdf
4. A different introductory lecture on 'R' (that I borrow from):

http://www.stat.cmu.edu/~cshalizi/statcomp/13/lectures/01--
02/lecture-01--02.pdf

fasta.bioch.virginia.edu/biol4230 2

mailto:wrp@virginia.edu

2

Why 'R' ?
• Open source, statistical programming

environment based on 'S' (Bell Labs statistical
programming environment)
– plotting functions, statistical distributions,

summary statistics, linear models, etc., etc.
• Universally used for functional bioinformatics

(Bioconductor)
• The standard platform for new statistical

development (false discovery rate fdr/qvalue)
• Tools for program

documentation/reproducibility (knitr)
• 'R' analyses on the WWW (shiny)

fasta.bioch.virginia.edu/biol4230 3

Introduction to 'R' – functional programming
Python is an object oriented "procedural" language. You specify in some detail how
to read data into variables, which are then iterated on, or transformed in some way,
or used to automate a task.
'R' is a functional language. In some sense, everything in 'R' happens to a vector.

Thus, in Python, to make square all the values in a vector (array), you might write:
>>> array = [1, 2, 3, 4, 5]
array = [1, 2, 3, 4, 5]
>>> [x * x for x in array]
[1, 4, 9, 16, 25]
>>> [2 * x for x in array]
[2, 4, 6, 8, 10]

in 'R':
> vector <- 1:4
> vector
[1] 1 2 3 4
> vector**2
[1] 1 4 9 16
> 2*vector
[1] 2 4 6 8

while there are 'for()' loops and 'if/then/else' conditionals in 'R', you will almost never
need them to use 'R'. You will need to define functions, and use "apply()" to apply a
function to the values in a vector

fasta.bioch.virginia.edu/biol4230 4

3

Introduction to 'R' – data types
• data types:

– numbers: 1, 1.0, 12.345

numbers are always double precision floating point
unless forced to integer with as.integer()

– boolean: TRUE, FALSE

boolean values can be used to retrieve entries in vectors
> v1<-1:10

> v1

[1] 1 2 3 4 5 6 7 8 9 10

> v1<4

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

> v1[v1 < 4]

[1] 1 2 3

– characters: "Jane", "pre-cancerous"

– NaN, NA - special no-data types

fasta.bioch.virginia.edu/biol4230 5

Introduction to 'R' – variable types
• Variable types:

– vectors[] : arrays of the same type (number, string)
v1 <- c(1,2,3,4)
v12 <- c(v1,v1) -> 1 2 3 4 1 2 3 4 # c() "flattens"
v2 <- 1:9
v3 <- seq(1,5,0.1)

– matrices[2,3] : arrays of arrays (of arrays), multi-dimensional
mat1 <- matrix(1:9, nrow=3)
mat1

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

– lists[] : array that can have different types, including vectors and
lists, has named entries (like dictionary)

– data.frame[] : like a matrix with named columns (like dictionary),
can contain different types

fasta.bioch.virginia.edu/biol4230 6

mat2 <- matrix(1:9,nrow=3,byrow=TRUE)

mat2

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

4

Introduction to 'R' – vector subsets
Selecting and sub-selecting data: vectors
• sub-part of vectors can be selected with vectors of indices

> v1 <- c(1.1, 2.2, 4.3, 3.4, 5.5)
> v1[2 , 3]
Error in v1[2, 3] : incorrect number of dimensions
> v1[c(2,3)] # indices must be in vector
[1] 2.2 4.3
> v1[c(2,4,3)] # indices can re-order
[1] 2.2 3.4 4.3
> v1[-c(2,3)] # negative index deletes selection (cannot combine)
[1] 1.1 3.4 5.5
> v1[order(v1)] # the order() function returns the indexes to sort
[1] 1.1 2.2 3.4 4.3 5.5

• sub-parts of vectors can be selected using booleans (TRUE, FALSE)
> v1 <- 1:10
> v1
[1] 1 2 3 4 5 6 7 8 9 10

> v1 <= 5
[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
> v1[v1<=5]
[1] 1 2 3 4 5
> v1 %%2 == 0
[1] FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
> v1[v1%%2==0]
[1] 2 4 6 8 10

• in all of these examples, sub-setting a vector returned a vector.

fasta.bioch.virginia.edu/biol4230 7

Introduction to 'R' – matrix subsets
• Selecting and sub-selecting data: matrices

> mat1 <- matrix(1:12, nrow=3)
> mat1

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> mat1[2,] # select all columns from one row
[1] 2 5 8 11
> mat1[,4] # select all rows from one column
[1] 10 11 12
> mat1[,4]**2 # compute on resulting vector
[1] 100 121 144
> mat1[1:2, 3:4] # for matrices, vectors select entries

[,1] [,2]
[1,] 7 10
[2,] 8 11
> mat1[c(3, 1),c(3,1,2,4)]

[,1] [,2] [,3] [,4]
[1,] 9 3 6 12
[2,] 7 1 4 10

fasta.bioch.virginia.edu/biol4230 8

5

Introduction to 'R' – variable types
• Selecting and sub-selecting data: matrices

> mat1 <- matrix(1:12, nrow=3)
> mat1

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12
> mat1[mat1[2,]>=5,]
Error in mat1[mat1[2,]>=5,](subscript)logical subscript
too long
mat1[2,]>=5
[1] FALSE TRUE TRUE TRUE
> mat1[,mat1[2,]>=5] # rows,columns where row=2 entry > 5

[,1] [,2] [,3]
[1,] 4 7 10
[2,] 5 8 11
[3,] 6 9 12
> mat1[,mat1[,2]<5] # wrong (too short) but no error.

[,1] [,2] # Vector extended from c(T,F,F) to
[1,] 1 10 # c(T,F,F,T) by concatenation
[2,] 2 11
[3,] 3 12
> mat1[mat1[,2]<5,]
[1] 1 4 7 10

fasta.bioch.virginia.edu/biol4230 9

Introduction to 'R' – data.frames
• data.frames are tables (arrays) with different types,

typically with labeled columns
> head(GSE_FPKM)

Gene MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3 GM12892_Rep1 GM12892_Rep2 GM12892_Rep3

1 1/2-SBSRNA4 0.54253200 0.318766 0.2925300 0.268225 0.50125500 0.4364100

2 A1BG 0.75134200 1.080660 1.3224700 2.389740 0.42191900 0.5300680

3 A1BG-AS1 0.90314900 0.549146 1.5402100 0.701192 0.12630800 0.6629410

4 A1CF 0.00176153 0.000000 0.0000000 0.000000 0.00385721 0.0000000

5 A2LD1 1.37068000 1.040530 1.1445600 2.341310 2.41900000 1.8365700

6 A2M 0.00716990 1.435170 0.0510643 0.137600 0.03139180 0.0299176

• typically, columns of the data are extracted by name
(GSE_FPKM$MCF.7_Rep1) as vectors, but they can also be extracted by
index (GSE_FPKM[2])

• data.frames can be reordered, selected and sub-setted just like matrices
> head(GSE_FPKM[order(GSE_FPKM$MCF.7_Rep1,decreasing=TRUE),])

Gene MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3 GM12892_Rep1 GM12892_Rep2 GM12892_Rep3

17769 RPL41 9479.40 5999.73 8669.86 8774.13 5197.96 4536.55

17833 RPS29 6909.02 3113.50 3847.84 10579.00 7282.94 5614.69

17829 RPS27 5281.44 2321.00 2883.32 10689.70 9748.79 7855.76

17765 RPL39 5217.51 2396.75 2294.83 6122.56 5146.11 4554.45

fasta.bioch.virginia.edu/biol4230 10

6

Introduction to 'R' – variables
• to see what is in a variable, use: str()

> str(v1)
num [1:5] 1.1 2.2 4.3 3.4 5.5
> str(mat1)
int [1:3, 1:4] 1 2 3 4 5 6 7 8 9 10 ...
> str(GSE_FPKM)
'data.frame': 23197 obs. of 11 variables:
$ Gene : Factor w/ 21648 levels "1/2-SBSRNA4",..: 1 2 3 4 5 6 7 8
9 10 ...
$ MCF.7_Rep1 : num 0.54253 0.75134 0.90315 0.00176 1.37068 ...
$ MCF.7_Rep2 : num 0.319 1.081 0.549 0 1.041 ...
$ MCF.7_Rep3 : num 0.293 1.322 1.54 0 1.145 ...
$ GM12892_Rep1: num 0.268 2.39 0.701 0 2.341 ...
$ GM12892_Rep2: num 0.50126 0.42192 0.12631 0.00386 2.419 ...
$ GM12892_Rep3: num 0.436 0.53 0.663 0 1.837 ...
$ H1.hESC_Rep1: num 0.6699 2.43029 0.42874 0.00798 0.40421 ...
$ H1.hESC_Rep2: num 0.60306 2.65009 0.37343 0.00259 0.68117 ...
$ H1.hESC_Rep3: num 0.54942 2.23051 0.44545 0.00536 0.50608 ...
$ H1.hESC_Rep4: num 0.4247 1.199 0.5754 0.0125 0.6244 ...

fasta.bioch.virginia.edu/biol4230 11

Introduction to 'R' – variables
• to see what is in a variable, use: summary()

> summary(v1)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.1 2.2 3.4 3.3 4.3 5.5

> summary(mat1)
V1 V2 V3 V4

Min. :1.0 Min. :4.0 Min. :7.0 Min. :10.0
1st Qu.:1.5 1st Qu.:4.5 1st Qu.:7.5 1st Qu.:10.5
Median :2.0 Median :5.0 Median :8.0 Median :11.0
Mean :2.0 Mean :5.0 Mean :8.0 Mean :11.0
3rd Qu.:2.5 3rd Qu.:5.5 3rd Qu.:8.5 3rd Qu.:11.5
Max. :3.0 Max. :6.0 Max. :9.0 Max. :12.0
> summary(GSE_FPKM)

Gene MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3
DUX2 : 17 Min. : 0.000 Min. : 0.000 Min. : 0.000
DUX4 : 13 1st Qu.: 0.009 1st Qu.: 0.000 1st Qu.: 0.005
DUX4L2 : 12 Median : 1.103 Median : 0.882 Median : 0.875
REXO1L2P: 10 Mean : 22.062 Mean : 23.801 Mean : 22.559
STK19 : 10 3rd Qu.: 9.433 3rd Qu.: 9.195 3rd Qu.: 8.305
TNXB : 10 Max. :9479.400 Max. :14997.700 Max. :8669.860
(Other) :23125

fasta.bioch.virginia.edu/biol4230 12

7

Reading in datasets (data.frame()s)
• for tab delimited files with headers:
Gene MCF-7_Rep1 MCF-7_Rep2 MCF-7_Rep3
1/2-SB 0.542532 0.318766 0.29253
A1BG 0.751342 1.08066 1.32247
A1BG- 0.903149 0.549146 1.54021 0.701192
• you can read directly into a data.frame[] with read.table():
> GSE_FPKM <- read.table('GSE49712_ENCODE_FPKM.txt', header=TRUE, sep="\t")
> head(GSE_FPKM)

Gene MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3 GM12892_Rep1 GM12892_Rep2 GM12892_Rep3
1 1/2-SBSRNA4 0.54253200 0.318766 0.2925300 0.268225 0.50125500 0.4364100
2 A1BG 0.75134200 1.080660 1.3224700 2.389740 0.42191900 0.5300680
3 A1BG-AS1 0.90314900 0.549146 1.5402100 0.701192 0.12630800 0.6629410
4 A1CF 0.00176153 0.000000 0.0000000 0.000000 0.00385721 0.0000000
5 A2LD1 1.37068000 1.040530 1.1445600 2.341310 2.41900000 1.8365700
6 A2M 0.00716990 1.435170 0.0510643 0.137600 0.03139180 0.0299176

• If every column is not labeled, you may get an error:
Error in read.table("GSE49712_ENCODE_FPKM.txt", header = TRUE, sep = "\t") :
duplicate 'row.names' are not allowed

• If you do not have a header, you can provide names:
> fpe = read.table("noheader.dat",
+ col.names=c("setting","effort","change")) # + for continuation

fasta.bioch.virginia.edu/biol4230 13

Plotting data
One of the great strengths of 'R' is its ability to plot data in many
different ways (this is also why you will be running it on your laptop,
rather than on interactive.hpc from the command line)
• x-y plots : plot(x-vector, y-vector)
> high_samps <- GSE_FPKM$MCF.7_Rep1 > 100

> plot(MCF.7_Rep1[high_samps], MCF.7_Rep2[high_samps],log="xy")

fasta.bioch.virginia.edu/biol4230 14

8

Plotting data
• histograms: hist(vector)
> hist(log(MCF.7_Rep1[MCF.7_Rep1 > 10]))

fasta.bioch.virginia.edu/biol4230 15

Plotting data
• boxplots boxplot(vector1, vector2, vector3)
> boxplot(log(GSE_FPKM[GSE_FPKM[2:4]>100,2:4]))

fasta.bioch.virginia.edu/biol4230 16

9

'R' functions
Functions may have arguments specified or unspecified when the function is defined
• There may be an arbitrary number of unspecified arguments
• Unspecified arguments denoted by ...
• Specified arguments may be supplied in the same order in which they occurred in the

function definition
• Specified arguments may be supplied as name=value in which case their order is not

important

> help(t.test) # if you know the name of the R built in function, you can use help()
> x = rnorm(10) # 10 numbers randomly drawn from a normal distribution; x ~ N(0, 1)
> y = rnorm(10) # 10 numbers randomly drawn from a normal distribution; y ~ N(0, 1)
> t.test(x, y, "greater") # arguments in same order in which they are defined in function
> t.test(x=x, alternative="greater", y=y) # argument names specified but in wrong order
Welch Two Sample t‐test data: x and y

t = 1.1862, df = 16.896, p‐value = 0.1260 alternative hypothesis: true difference in means
is greater than 0
95 percent confidence interval:

‐0.2838161 Inf
sample estimates:
mean of x mean of y
0.02149336 ‐0.58618035

fasta.bioch.virginia.edu/biol4230 17

'R' functions
The R Base Package (so many functions; indexed by alphabet!)

stat.ethz.ch/R‐manual/R‐patched/library/base/html/00Index.html
Basic functions that come with your installation of R

– mean(); sum(); median(); quantile(); max(); min(); range();

– abs(); sign(); log(); log10(), sqrt(); exp(); sin(); cos();
tan(); sinh(); tanh()

– sort(); order(); rev();

– duplicated(); unique();

– seq(); rep();

– round(); trunc(), floor(); ceiling()

– cat(); paste(); substring(); grep()

– merge(); cbind(); rbind()

Contributed Packages: Currently, the CRAN package repository has more than 1700
packages:

cran.r‐project.org/web/packages/

Specialized packages implementing the latest methods developed in computational
statistics.
Use help() for assistance on usage!

fasta.bioch.virginia.edu/biol4230 18

10

'R' functions – apply()
The apply() function allows you to apply functions, like mean() or var(), which
apply to a vector, to a row (or row subset) of a matrix or data.frame.

> GSE_FPKM[11:15,2:4]
MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3

11 0.000000 0.0000 0.0000000
12 0.014162 0.0000 0.0000000
13 29.783700 23.1135 38.1064000
14 20.810500 21.7803 32.8547000
15 0.104898 0.0000 0.0610452

> var(GSE_FPKM[13,2:4]) # does NOT work – should report one variance per row
MCF.7_Rep1 MCF.7_Rep2 MCF.7_Rep3

MCF.7_Rep1 NA NA NA
MCF.7_Rep2 NA NA NA
MCF.7_Rep3 NA NA NA

> apply(GSE_FPKM[13,2:4],1,var) # does work – variance of row 13 is 56.42433
13

56.42433
> apply(GSE_FPKM[11:15,2:4],1,var) # five rows, five variances

11 12 13 14 15
0.000000e+00 6.685408e-05 5.642433e+01 4.477427e+01 2.775529e-03

fasta.bioch.virginia.edu/biol4230 19

'R' examples – expression analysis 2
rn.0<-rnorm(4, mean=1.0, sd=1.0)

rn.1<-rnorm(4, mean=1.0, sd=1.0)

rn.2<-rnorm(4, mean=1.0, sd=1.0)

rnb.0<-rnorm(4, mean=2.0, sd=1.0)

rnb.1<-rnorm(4, mean=2.0, sd=1.0)

rnb.2<-rnorm(4, mean=2.0, sd=1.0)

boxplot(rn.0, rnb.0, rn.1, rnb.1, rn.2, rnb.2,

horizontal=TRUE,

border=c("red","blue","red","blue","red","blue"),

names=c("rn","rnb","","","",""))

t.test(rn.0, rnb.0)

t.test(rn.1, rnb.1)

t.test(rn.2, rnb.2)

t.test(c(rn.0,rn.1,rn.2),c(rnb.0,rnb.1,rnb.2))

fasta.bioch.virginia.edu/biol4230 20

11

'R' examples – expression boxplot()

fasta.bioch.virginia.edu/biol4230 21

rn
rn
b

0.0 0.5 1.0 1.5 2.0 2.5 3.0

'R' examples – t.test()

fasta.bioch.virginia.edu/biol4230 22

> t.test(rn.0, rnb.0)
Welch Two Sample t-test

data: rn.0 and rnb.0
t = 0.48598, df = 5.0367, p-value = 0.6474
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-1.637706 2.403365
sample estimates:
mean of x mean of y
1.832011 1.449182

> t.test(rn.1, rnb.1)

Welch Two Sample t-test
data: rn.1 and rnb.1
t = -2.5994, df = 5.8732, p-value = 0.0415
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-3.01521343 -0.08321807
sample estimates:
mean of x mean of y
0.5727129 2.1219286

12

'R' examples – p.adjust()

fasta.bioch.virginia.edu/biol4230 23

nreps <- 4 # number of replicates
ngenes <- 20000
ngenes0 <- 15000
ngenes1 <- 3000
ngenes2 <- 1500
ngenes3 <- 500

data0 <- matrix(rnorm(ngenes*nreps, mean=1, sd=0.3), nrow=ngenes)
data1 <- matrix(rnorm(ngenes*nreps, mean=1, sd=0.3), nrow=ngenes)

diff0 <- matrix(rnorm(ngenes0*nreps, mean=1.0, sd=0.3), nrow=ngenes0)
diff1 <- matrix(rnorm(ngenes1*nreps, mean=1.5, sd=0.4), nrow=ngenes1)
diff2 <- matrix(rnorm(ngenes2*nreps, mean= 10, sd=3.0), nrow=ngenes2)
diff3 <- matrix(rnorm(ngenes3*nreps, mean=100, sd=10.0), nrow=ngenes3)

no_change <- cbind(data0, data1) # 8 colums, 1:4 data0, 5:8 data1

mix_change <- cbind(data0, rbind(diff0,diff1,diff2,diff3)) # put the data together

nc_pvals <- matrix(apply(no_change, 1, function(x) {
t.test(x[1:4], x[5:8])$p.value

}), nrow=200)

mix_pvals <- matrix(apply(mix_change, 1, function(x) {
t.test(x[1:4], x[5:8])$p.value

}), nrow=200)

mix_bon <- matrix(p.adjust(mix_pvals, "bonferroni"), nrow=200)
mix_qvals <- matrix(p.adjust(mix_pvals, "fdr"), nrow=200)

image(nc_pvals < 0.05, axes=F, main="No change, p < 0.05")

image(mix_pvals < 0.05, axes=F, main="Mixed change, p < 0.05")
image(mix_bon < 0.05, axes=F, main="Mixed change, p < 0.05/20K (Bonferroni)")
image(mix_qvals < 0.05, axes=F, main="Mixed change, q < 0.05")

sum(nc_pvals < 0.05) # 817 in last simulation
sum(mix_pvals < 0.05) # 3617 in last simulation
sum(mix_qvals < 0.05) # 1035 in last simulation

'R' examples – p.adjust()

fasta.bioch.virginia.edu/biol4230 24

p.adjust {stats}R Documentation
Adjust P-values for Multiple Comparisons
Description
Given a set of p-values, returns p-values adjusted using one of several methods.
Usage
p.adjust(p, method = p.adjust.methods, n = length(p))

p.adjust.methods
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none")
Arguments
p numeric vector of p-values (possibly with NAs). Any other R is coerced by as.numeric
method correction method. Can be abbreviated.
n number of comparisons, must be at least length(p); only set this (to non-default) when you know what you
are doing!
Details
The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-values are multiplied by the number
of comparisons. Less conservative corrections are also included by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"),
Hommel (1988) ("hommel"), Benjamini & Hochberg (1995) ("BH" or its alias "fdr"), and Benjamini & Yekutieli (2001) ("BY"),
respectively. A pass-through option ("none") is also included. The set of methods are contained in the p.adjust.methods
vector for the benefit of methods that need to have the method as an option and pass it on to p.adjust.
The first four methods are designed to give strong control of the family-wise error rate. There seems no reason to use the
unmodified Bonferroni correction because it is dominated by Holm's method, which is also valid under arbitrary
assumptions.
Hochberg's and Hommel's methods are valid when the hypothesis tests are independent or when they are non-negatively
associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel's method is more powerful than Hochberg's, but the
difference is usually small and the Hochberg p-values are faster to compute.
The "BH" (aka "fdr") and "BY" method of Benjamini, Hochberg, and Yekutieli control the false discovery rate, the expected
proportion of false discoveries amongst the rejected hypotheses. The false discovery rate is a less stringent condition than
the family-wise error rate, so these methods are more powerful than the others.

13

fasta.bioch.virginia.edu/biol4230 25

'R' examples – p.adjust()

Introduction to 'R'

• 'R' works on vectors, matrices, and data.frames()
• subsets of vectors/matrices/data.frames can be

specified:
– vectors of indices (c(4,3,1,2), order(v1))
– boolean vectors ($rep1>10 & rep2 > 10)
– [,1:3] : all rows, columns 1:3
– [1:4,] : all columns, rows 1:4

• columns of data.frames() can be named or
indexed

• read.table()
• plot, hist, boxplot

fasta.bioch.virginia.edu/biol4230 26

