
2/1/18

1

Python Programming 1
variables, loops, and input/output

• A quick introduction to Python
– Running python
– Variable types: scalars, arrays[]=[0,1,2],
tuples[]=(1,'pi',3.12), hashes[]={key:value}

– Flow control: if () then: else:, for:, while:
– Input/output and print; fileinput, open()
– Useful python functions:

.split(), .join(), .strip('\n')
• Programming – a problem solving approach

fasta.bioch.virginia.edu/biol4230 1

Biol4230 Thurs, Feb 1, 2018
Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057

To learn more:
• Practical Computing: Part III – ch. 7 – 10
• Learn Python the Hard Way: learnpythonthehardway.org/book/
• Think Python (collab) www.greenteapress.com/thinkpython/thinkpython.pdf
• Exercises due noon Monday, Feb. 5 (save in biol4230/hwk3)

1. Write a program to generate 10 random numbers between 0 and 100 (0
<=x<100), calculate the mean (average). Print both the random numbers
and the mean to a file.
a. Make a program that calculates the average of 100 random "real"

numbers between 0 and 100 (0 <= x < 100)
b. write a program that generates 101 random numbers, stores them in

an array, and calculates the median (hint, use the sort function to sort
the array, then report the value of the middle).

2. write a program to read a file of Uniprot accession strings and download
the sequences in FASTA format to "stdout"

3. Repeat steps 8 – 10 of last week's bash script homework using python
programs (see last slide) to isolate the range of E()-values of interest

2fasta.bioch.virginia.edu/biol4230

2/1/18

2

Introduction to python
• Variable types:

– (in bash scripting, variables are $n, and not typed)
– floats, ints, strings
– arrays=[], tuples=() of floats, ints, strings
– dict's (hashes) fields = dict(zip(names, data))

• Control structures:
– for x in list : (bash do; done)
– if (true) : ; elif (true): ; else :

; only for multiple statements on one line
– statement blocks are indented (no ”done”, “}”, or “fi”)

• Functions are often applied to variables
– array.sort()
– string.strip("\n"), string.split("\t")

• Some functions are "imported"
– import fileinput
for line in fileinput.input()

– from urllib import urlopen
print urlopen(url_string).read()

fasta.bioch.virginia.edu/biol4230 3

Running Python

Running a script:

$ python myscript.py

Spontaneous Python:

$ python

>>>print "Here we are."

Here we are.

>>><ctrl-D>

Executable scripts:

$ chmod +x myscript.py

$ myscript.py

fasta.bioch.virginia.edu/biol4230 4

2/1/18

3

Literals: strings and numbers
$ python
Python 2.7.11 |Anaconda 2.4.0 (64-bit)| (default, Dec 6 2015, 18:08:32)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.
Please check out: http://continuum.io/thanks and https://anaconda.org
>>> print 2+2
4
>>> print "2+2=",2+2
2+2= 4
>>> print "2+2='; print 2+2

File "<stdin>", line 1
print "2+2='; print 2+2

^
SyntaxError: EOL while scanning string literal
>>> print "2+2="; print 2+2
2+2=
4
>>> print "2+2=",; print 2+2
2+2= 4

fasta.bioch.virginia.edu/biol4230 5

Practical Computing, Ch. 8

Literals: strings and numbers
string “addition” (concatenation operator)
>>> print "one + two " + "three"
one + two three
mixing numbers and strings:
print "3 * 3 = "+ (2 + 2)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: cannot concatenate 'str' and 'int' objects
>>> print "3 * 3 = ", (2 + 2)
3 * 3 = 4
>>>
decimals and concatenations:
>>> print 2.3 + 2, 2 + 2., 2 + 2, 7/2, 7.0/2
4.3 4.0 4 3 3.5
>>> print 2.3 + 2
4.3
>>> print 2 + 2.
4.0
>>> print 2 + 2
4
>>> print 7/2, 7/2.
3 3.5

fasta.bioch.virginia.edu/biol4230 6

Practical Computing, Ch. 8

python values are
"typed" cannot add (+)
a string and a number

works because no (+),
just another argument

floating point

integer

both

2/1/18

4

Python vs. bash scripts

• ".py"	file	extension,	e.g.	"myScript.py"
• begins	with	a	"shebang"

#!/bin/env python

• ".py" scripts	need	chmod +x to	be	
executable:
invoked	with	python:	python myScript.py
or	directly:	./myScript.py

fasta.bioch.virginia.edu/biol4230 7

Minimal python
• Variables:

– simple
– array = (1,2,3,4,5); array[0] == 1;
– dict = {'f_name':'Bill', 'l_name':'Pearson'}; dict['f_name'] ==

'Bill'

• Loops:
– while (condition):
– for acc in accs :
– break; continue;

• Conditionals:
– if (condition1) : elif (condition2) : else:
– if (line[0] == '^') : continue;

• Python loop and conditional code blocks are specified with indentation
only (a ':' requires indentation; block ends when indentation is done)

• Input/Output:
– import fileinput
– for line in fileinput.input:

process(line)
– fd = open("my_data.dat",'r')

for line in f:
process(line)

– print "\t".join(array);
Practical Computing, Ch. 8-10

fasta.bioch.virginia.edu/biol4230 8

2/1/18

5

Python variables
• Like many scripted languages, python has several data types

(numeric, sequence, set, class, etc). We will be using three in
this class:
– numeric (integers and floats) four=4; pi=3.14
– sequences (strings, arrays, tuples), indexed starting at 0

seq="ACGT"; print seq[1]; strings are immutable
(you can change the entire string, but not parts of it)
arr=[1,4,9,16,25]; print arr[2]
num = 1; and num_str='1'; are different
tuple = (1, 3.13159, 'pi'); tuples are
"immutable" (cannot be changed)

– dicts (key, value pairs, aka "hashes")
seq_entry = {"acc":"P09488",

"seq":"MPMILGYWDIRGLAHAIRLL"}
print seq_entry["acc"]; print seq_entry["seq"][0:3]

• Variables are not declared in advance; scalars (numerics),
sequences (strings, arrays), and dict {} variables all look the
same. Consider using naming conventions to distinguish them.

fasta.bioch.virginia.edu/biol4230 9

Practical Computing, Ch. 8

our first Python script: myscript.py

#!/bin/env python

or #!/usr/bin/python

import sys

print sys.version

name="Bill"

print "my name is: "+name

fasta.bioch.virginia.edu/biol4230 10

Tell the shell this
is a python script

use sys functions

print the python version

assign the string "Bill" to
the variable "name"

print out the label and
variable "name"

2/1/18

6

our first Python script

$ myscript.py
2.7.11 |Anaconda 2.4.0 (64-bit)| (default, Dec 6 2015, 18:08:32)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

my name is: Bill

$ chmod +x myscript.py

fasta.bioch.virginia.edu/biol4230 11

Python can act like bash
#!/bin/env python

import subprocess
accs=['P09488', 'P28161', 'P21266', 'Q03013', 'P46439']

for acc in accs:
subprocess.call("curl --silent http://www.uniprot.org/uniprot/" +

acc + ".fasta", shell=True)

fasta.bioch.virginia.edu/biol4230 12

#!/bin/env python

from urllib import urlopen
base_url = 'http://www.uniprot.org/uniprot/'
accs=['P09488', 'P28161', 'P21266', 'Q03013', 'P46439']

for acc in accs:
print urlopen(base_url + acc + '.fasta').read(),

Python can be a web-browser
why "acc", not "accs"?

why use "base_url"?

use one urlopen function (urllib)

use subprocess functions (call)

2/1/18

7

arrays and tuples (lists)
list=[1,2,3,4,5]; #
tuple=(100, 3.14159, "Pi"); # three different types, tuples

are "immutable"; they cannot be assigned to:
tuple[1] = 2.718281; # illegal

nt=['a','c','g','t']; # DNA
pur=['a', 'g']; pyr=['c', 't']
nt = [pur + pyr] == ['a','g','c','t']

nt2 = [pur, pyr] == [['a','g'],['c','t']]
lists do not "flatten"

a = 'a'; c='c'... # what is the difference between a and 'a'
nt=[a, c, g, t]; # interpolation
[a, c, g, t] = nt; # assigning to lists
lines = lots_of_lines.split("\n");
words = lots_of_words.split(" ");

strings are sequences, like arrays, but an array of
characters is not a string.

strings, arrays, and tuples are indexed starting at 0:
arr = [1,2,3,4,5]; arr[0] == 1; arr[length(att)-1] == 5;

Practical Computing, Ch. 9
fasta.bioch.virginia.edu/biol4230 13

python operators
• Arithmetic: addition, subtraction, multiplication, division,

modulus (remainder)
a = 2 + 2;
a = 2 + 2 * 2; a = 2 + (2 * 2);
operator precedence, use parens
c += (a + b) # increment by (a+b)
division by integer != division by float
7/2 == 3; 7/2.0 = 3.5; # python 2.7 vs 3

• Comparison
>, >=, ==, !=, <=, < for numbers and strings

• Logical: and 'and' or 'or' not 'not'
• python variables preserve 'type':

print 1 + 2 == 3
print '1'+'2' == '12'
print 1 + '2' == error

14

Practical Computing, Ch. 8
fasta.bioch.virginia.edu/biol4230

2/1/18

8

Flow control: if : else :
• if:/elif:/else:
[sig, border, not_sig] = [0,0,0];

if (evalue <= 0.001):
sig += 1

elif (evalue <= 0.1):
border += 1

else:
not_sig += 1

• python uses ':' with indentation, not { }, to define
statement blocks

• Conditions can be connected by "boolean" operators:
if (evalue > 0.001 and evalue <= 0.1):

border += 1

15

Practical Computing, Ch. 9
fasta.bioch.virginia.edu/biol4230

Flow control: for : loops
sum = 0; # always remember to initialize
for value in array_of_values:

sum += value

python does not have the traditional C/java/perl/fortran indexed
loop of the form:
for (i=0; i<n; i++){sum += array[i];}

instead, you can use range() or enumerate()
for i in range(length(array_of_values)):

sum += array_of_values[i]
or
for index, value in enumerate(array_of_values):

sum += array_of_values[index]
sum_v += value # sum and sum_v get the same values

but mostly, you do not use the index unless you need to look to the
previous/next entry in the array

16

Practical Computing, Ch. 9
fasta.bioch.virginia.edu/biol4230

2/1/18

9

Flow control: while () {} loops
while (line = fd.readline()):
line = line.strip('\n') # always remove "\n" first
columns = '\t'.split(line)

• 'continue' skips the rest of the loop
for line in fileinput.input() :
match '>' at beginning of line, FASTA header
if (line[0] == '>'):
continue

do something to sequence lines

• 'break' exits the loop
for line in fileinput.input():

line = line.strip('\n') # always remove "\n" first
columns = '\t'.split(line)
if (columns[-2] > 0.001) :
break

17

Practical Computing, Ch. 9
fasta.bioch.virginia.edu/biol4230

Input/Output I
• Data is read with the fileinput.input()function or by opening

a file object fd=open("filename")
import fileinput
for line in fileinput.input()

– If you put a file name on the command line, fileinput reads
from the file

– If you put a list of files fileinput reads them in order
– If you don't put a file, fileinput.input() uses stdin

• fd = open("filename")
for line in fd :

fd.close() # files should be closed after reading
• Lines read from files have "\n" at the end; always remove it

line = line.strip('\n')

• If only one file read at a time, and one file for output, use
fileinput.input() for input and '>' on the command line to
write to stdout.

Practical Computing, Ch. 9, p 177
fasta.bioch.virginia.edu/biol4230 18

2/1/18

10

Input/Output II
• Files can also be opened for writing ('>' or '>>' – extend at

end)
out_fd = open('outfile.name', 'w') # open file for writing

• To send data to a file (or stdout), use 'print'
print "accn:",prot_acc, "evalue:", evalue # also
print "accn: %s evalue: %g" % (prot_acc, evalue)
Goes to stdout (> on the command line)

out_fd.write("accn: %s evalue: %s\n" % (prot_acc, evalue))

Goes to 'outfile.name' because of open() above
• .write() lines (unlike print lines) always need "\n"
• If input is <tab> delimited, output often should be as well.

print "\t".join(map(str,(query_acc, subj_acc, evalue)))
• out_fd.close();

fasta.bioch.virginia.edu/biol4230 19

Practical Computing, Ch. 9, p 182

"map" list (array) to str (string) type

Input/Output Examples

Count lines in a file:

#/usr/bin/python
import fileinput
c = 0
for line in fileinput.input() :
c += 1

print c

$ python count_lines.py gstm1_human
5

$ wc gstm1_human.aa
5 14 311 gstm1_human.aa

20fasta.bioch.virginia.edu/biol4230

2/1/18

11

Summarize blast output with python

Problem – write a python script to identify
distant homologs, and re-search swissprot with
those sequences
• Did problem before with bash

blastp –outfmt 6, cut –f 2

• With python, we can look at the expectation
value to find distant homolog candidates (
0.1 < evalue < 2.0)

21fasta.bioch.virginia.edu/biol4230

python problem solving – initial steps

1. Look at the (raw) data
2. Identify what we need
3. Isolate the numbers needed, and save them
4. Do the necessary arithmetic/selection

fasta.bioch.virginia.edu/biol4230 22

see Practical Computing, chapter 10, for
an almost identical problem and an
outstanding illustration of typical data
extraction/reduction strategies (Fig. 10.1)

2/1/18

12

1) Look at the data
sp|GSTM1_HUMAN sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218 7e-127 452
sp|GSTM1_HUMAN sp|GSTM4_HUMAN 86.70 218 29 0 1 218 1 218 3e-112 403
sp|GSTM1_HUMAN sp|GSTM1_MACFA 85.78 218 31 0 1 218 1 218 3e-110 397
sp|GSTM1_HUMAN sp|GSTM2_PONAB 85.78 218 31 0 1 218 1 218 1e-109 395
sp|GSTM1_HUMAN sp|GSTM2_MACFA 85.78 218 31 0 1 218 1 218 1e-109 395
sp|GSTM1_HUMAN sp|GSTM5_HUMAN 87.61 218 27 0 1 218 1 218 1e-109 395

blastp –help
*** Formatting options
-outfmt <String>
alignment view options:
0 = pairwise,

5 = XML Blast output,
6 = tabular,

When not provided, the default value is:
'qseqid sseqid pident length mismatch gapopen qstart qend sstart send
evalue bitscore', which is equivalent to the keyword 'std'
Default = `0'

fasta.bioch.virginia.edu/biol4230 23

2) Identify/extract the data we need
qseqid sseqid pident len mis gp qs qe ss se evalue bits
sp|GSTM1_HUMAN sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218 7e-127 452
sp|GSTM1_HUMAN sp|GSTM4_HUMAN 86.70 218 29 0 1 218 1 218 3e-112 403
sp|GSTM1_HUMAN sp|GSTM1_MACFA 85.78 218 31 0 1 218 1 218 3e-110 397
sp|GSTM1_HUMAN sp|GSTM2_PONAB 85.78 218 31 0 1 218 1 218 1e-109 395
sp|GSTM1_HUMAN sp|GSTM2_MACFA 85.78 218 31 0 1 218 1 218 1e-109 395
sp|GSTM1_HUMAN sp|GSTM5_HUMAN 87.61 218 27 0 1 218 1 218 1e-109 395

1. Subject accession (sseqid)
2. evalue
3. Select hits with 0.1 < evalue < 2.0

fasta.bioch.virginia.edu/biol4230 24

2/1/18

13

2) Identify/extract the data we need
qseqid sseqid pident len mis gp qs qe ss se evalue bits
sp|GSTM1_HUMAN sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218 7e-127 452
sp|GSTM1_HUMAN sp|GSTM4_HUMAN 86.70 218 29 0 1 218 1 218 3e-112 403
sp|GSTM1_HUMAN sp|GSTM1_MACFA 85.78 218 31 0 1 218 1 218 3e-110 397
sp|GSTM1_HUMAN sp|GSTM2_PONAB 85.78 218 31 0 1 218 1 218 1e-109 395
sp|GSTM1_HUMAN sp|GSTM2_MACFA 85.78 218 31 0 1 218 1 218 1e-109 395
sp|GSTM1_HUMAN sp|GSTM5_HUMAN 87.61 218 27 0 1 218 1 218 1e-109 395

Get the data:
import fileinput
for line in fileinput.input():
line = line.strip('\n') # ALWAYS remove \n
fields = line.split('\t') # break fields at tabs
fields[] is an array of strings
numbers must be converted to do arithmetic

...

fasta.bioch.virginia.edu/biol4230 25

Practical Computing, Ch. 9, p 183

3) Isolate the numbers, and save them
#fields[0] [1] [2] [3] [4][5][6][7][8][9][10] [11]
qseqid sseqid pident len mis gp qs qe ss se evalue bits
sp|GSTM1_HUMAN sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218 7e-127 452
sp|GSTM1_HUMAN sp|GSTM4_HUMAN 86.70 218 29 0 1 218 1 218 3e-112 403

How do we refer to the data? fields = line.split('\t')
1) Array:

fields[0], fields[1], fields[3], ...
or isolate the ones you need:
subj_acc, evalue = fields[1], fields[10]
subj_acc, evalue = fields[1], fields[-2]

The problem with arrays is that you need to remember where the data
is. Is fields[10] the evalue, or the bit score?
2) Dict: (no longer need to remember array indexes, remember names)
field_names = ['qseqid', 'sseqid', ..., 'evalue', 'bits']
hit_dict = dict(zip(field_names, fields))
hit_dict = dict(zip(field_names, line.split('\t')))
zip merges dict "keys" (field names) with "values" (data)

fasta.bioch.virginia.edu/biol4230 26

2/1/18

14

4) Do the necessary arithmetic/selection
qseqid sseqid pident len mis gp qs qe ss se evalue bits
sp|GSTM1_HUMAN sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218 7e-127 452
sp|GSTM1_HUMAN sp|GSTM4_HUMAN 86.70 218 29 0 1 218 1 218 3e-112 403

Identify the hits with 0.01 < evalue < 2.0

if (float(fields[-2]) > 0.1 and float(fields[-2]) <= 2.0) :
print fields[1]+'\t'+fields[-2]

alternatively
if (float(hit_dict['evalue']) > 0.1 and

float(hit_dict['evalue']) <= 2.0) :
print hit_dict['sseqid']+'\t'+hit_dict['evalue']

fasta.bioch.virginia.edu/biol4230 27

why is float() needed?

Summary – Introduction to python
• Variable types:

– floats, ints, strings
– arrays=[], tuples=() of floats, ints, strings
– dict's (hashes) fields = dict(zip(names, data))

• Control structures:
– for x in list :
– if (true) : ; elif (true): ; else :
– statement blocks are indented

• Functions are often applied to variables
– array.sort()
– string.strip("\n"), string.split("\t")

• Some functions are "imported"
– import fileinput
for line in fileinput.input()

– from urllib import urlopen
print urlopen(url_string).read()

fasta.bioch.virginia.edu/biol4230 28

2/1/18

15

Homework, due Monday, 5 Feb (biol4230/hwk3)
1. arrays of random numbers:

a. Write a program to generate 10 random numbers between 0 and 100 (0 <= x < 100),
calculate the mean (average). Print both the random numbers and the mean.

b. write a program that calculates the average of 100 random "real" numbers between 0
and 200 (0 <= x < 200)

c. write a program that generates 101 random numbers, stores them in an array, and
calculates the median (hint, use the sorted() function to sort the array)

2. write a program that reads a file of Uniprot accession strings and downloads the sequences
in FASTA format to "stdout" (use urllib), like hwk1

3. repeat parts of last week's homework using python:
a. Using one of the blastp (or ssearch36) tabular output files you generated in the

similarity searching lab, write a program that extracts the accession and E()-value from
the output file. Just as you used "cut" last week, you can use ".split()" this week

b. modify the program to extract the accessions, but only for results with E() < 0.001
(remember that the tabular output files are ordered by E()-value, so you can stop once
you hit 0.001).

c. write a program that downloads sequences for the blastp or ssearch36 accessions with
0.1 < E() <= 2.0, and runs another blastp search (tabular format) with the downloaded
sequences, saving the results of each search in a separate file.

4. As always, document the scripts in hwk3.notes.

29fasta.bioch.virginia.edu/biol4230

