Python Programming 1
variables, loops, and input/output

Biol4230 Thurs, Feb 1, 2018
Bill Pearson wrp@virginia.edu 4-2818 Pinn 6-057

* A quick introduction to Python
— Running python

— Variable types: scalars, arrays[]=[0,1,2],
tuples[]=(1,'pi',3.12), hashes[]={key:value}

— Flow control: if () then: else:, for:, while:
— Input/output and print; fileinput, open()
— Useful python functions:
.split(), .join(), .strip('\n')
+ Programming — a problem solving approach

fasta.bioch.virginia.edu/biol4230

To learn more:

+ Practical Computing: Part lll —ch. 7 - 10
+ Learn Python the Hard Way: learnpythonthehardway.org/book/
+ Think Python (collab) www.greenteapress.com/thinkpython/thinkpython.pdf

+ Exercises due noon Monday, Feb. 5 (save in biol4230/hwk3)
1. Write a program to generate 10 random numbers between 0 and 100 (0
<=x<100), calculate the mean (average). Print both the random numbers
and the mean to a file.

a. Make a program that calculates the average of 100 random "real"
numbers between 0 and 100 (0 <= x < 100)

b. write a program that generates 101 random numbers, stores them in
an array, and calculates the median (hint, use the sort function to sort
the array, then report the value of the middle).

2. write a program to read a file of Uniprot accession strings and download
the sequences in FASTA format to "stdout"

3. Repeat steps 8 — 10 of last week's bash script homework using python
programs (see last slide) to isolate the range of E()-values of interest

fasta.bioch.virginia.edu/biol4230

2/1/18

Introduction to python

+ Variable types:
— (in bash scripting, variables are $n, and not typed)
— floats, ints, strings
— arrays=[], tuples=() of floats, ints, strings
— dict's (hashes) fields = dict(zip(names, data))
» Control structures:

- for x in list : (bash do; done)
- 1f (true) : ; elif (true): ; else :
; only for multiple statements on one line

— statement blocks are indented (no "done”, “}", or “fi”)
+ Functions are often applied to variables
- array.sort ()
- string.strip("\n"), string.split("\t")
+ Some functions are "imported"
- import fileinput
for line in fileinput.input ()
— from urllib import urlopen
print urlopen (url string).read()

fasta.bioch.virginia.edu/biol4230

Running Python

Running a script:

$ python myscript.py

Spontaneous Python:

$ python

>>>print "Here we are."

Here we are.

>>><ctrl-D>

Executable scripts:

$ chmod +x myscript.py

$ myscript.py

fasta.bioch.virginia.edu/biol4230

2/1/18

Literals: strings and numbers

$ python

Python 2.7.11 |Anaconda 2.4.0 (64-bit)| (default, Dec 6 2015, 18:08:32)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)] on linux2

Type "help", "copyright", "credits" or "license" for more information.
Anaconda is brought to you by Continuum Analytics.

Please check out: http://continuum.io/thanks and https://anaconda.org
>>> print 2+2

4
>>> print "2+2=",2+2
2+2= 4

>>> print "2+2='; print 2+2
File "<stdin>", line 1
print "2+2='; print 2+2

SyntaxError: EOL while scanning string literal
>>> print "2+2="; print 2+2

2+2=

4

>>> print "2+2=",; print 2+2
2+2= 4

Practical Computing, Ch. 8
fasta.bioch.virginia.edu/biol4230 5

Literals: strings and numbers

string “addition” (concatenation operator)

>>> print "one + two " + "three"

one + two three

mixing numbers and strings:

print "3 * 3 = "+ (2 + 2)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

python values are
"typed" cannot add (+)
a string and a number

TypeError: cannot concatenate 'str' and 'int' objects
>>> print "3 * 3 =", (2 + 2)

3 3= 4 works because no (+),
>>> just another argument

decimals and concatenations:
>>> print 2.3 + 2, 2 +2., 2+ 2, 7/2, 7.0/2

4.3 4.0 4 3 3.5

>>> print 2.3 + 2

4.3

>>> print 2 + 2.
4.0

>>> print 2 + 2
;

>>> print 7/2, 7/2.

3 3.8 ’Practical Computing, Ch. 8

a.bioch.virginia.edu/biol4230 6

2/1/18

Python vs. bash scripts

".py" file extension, e.g. "myScript.py"
begins with a "shebang"

#!/bin/env python

".py" scripts need chmod +xtobe
executable:

invoked with python: python myScript.py
or directly: . /myScript.py

fasta.bioch.virginia.edu/biol4230

Minimal python

Variables:
— simple
— array = (1,2,3,4,5); array[0] == 1;
— dict = {'f_name':'Bill', 'l _name':'Pearson'}; dict['f_name'] ==
'Bill’
Loops:
— while (condition):
— for acc in accs :
— break; continue;

Conditionals:
— if (conditionl) : elif (condition2) : else:
— if (line[0] == '"') : continue;

Python loop and conditional code blocks are specified with indentation
only (a "' requires indentation; block ends when indentation is done)
Input/Output:
— import fileinput
— for line in fileinput.input:
process(line)
— fd = open("my_data.dat",'r")
for line in f:
process(line)
— print "\t".join(array);

Practical Computing, Ch. 8-10

fasta.bioch.virginia.edu/biol4230

2/1/18

Python variables

Like many scripted languages, python has several data types
(numeric, sequence, set, class, etc). We will be using three in
this class:
— numeric (integers and floats) four=4; pi=3.14
— sequences (strings, arrays, tuples), indexed starting at 0
seq="ACGT"; print seq[l]; strings are immutable
(you can change the entire string, but not parts of it)
arr=[1,4,9,16,25]; print arr[2]
num = 1; and num str='1'; are different
tuple = (1, 3.13159, 'pi'); tuplesare
"immutable" (cannot be changed)
— dicts (key, value pairs, aka "hashes")
seq_entry = {"acc":"P09488",
"seq" :"MPMILGYWDIRGLAHAIRLL"}
print seq entry["acc"]; print seqg entry["seq"][0:3]
+ Variables are not declared in advance; scalars (humerics),
sequences (strings, arrays), and dict {} variables all look the
same. Consider using naming conventions to distinguish them.

’ Practical Computing, Ch. 8 ‘
fasta.bioch.virginia.edu/biol4230

our first Python script: myscript.py

#!/bin/env python Tell the shell this
or #!/usr/bin/python is a python script
import sys |use sys functions |

print sys.version | print the python version |

name="Bill" assign the string "Bill" to
the variable "name"

print "my name is: "+name print out the label and

variable "name"

fasta.bioch.virginia.edu/biol4230

2/1/18

our first Python script

$ myscript.py
2.7.11 |Anaconda 2.4.0 (64-bit)| (default, Dec 6 2015, 18:08:32)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]

my name is: Bill

$ chmod +x myscript.py

fasta.bioch.virginia.edu/biol4230 il

Python can act like bash

#!/bin/env python

, | use subprocess functions (call) |
import subprocess
accs=['P09488', 'P28l6l', 'P21266', 'Q03013', 'P46439']

for acc in accs:
subprocess.call ("curl --silent http://www.uniprot.org/uniprot/" +
acc + ".fasta", shell=True)

| why "acc", not "accs"? |

Python can be a web-browser

#!/bin/env python

from urllib import urlopen | use one urlopen function (urllib) |

base url = 'http://www.uniprot.org/uniprot/"'
accs=['P09488', 'P28161', 'P21266', 'Q03013', 'P46439']

for acc in accs:
print urlopen (base url + acc + '.fasta').read(),

why use "base_url"?

fasta.bioch.virginia.edu/biol4230 12

2/1/18

arrays and tuples (lists)

list=[1,2,3,4,5]; #
tuple=(100, 3.14159, "Pi"); # three different types, tuples
are "immutable"; they cannot be assigned to:

tuplefl}=2-718281; # illegal

nt=['a','c','g','t"1; # DNA

pur=('a', 'g'l: pyr=['c', 't']

nt = [pur + pyr] == ['a’','g','c','t"]
nt2 = [pur, pyr] == [['a','g'],['c','t"]]

lists do not "flatten"

a="'a'; c='c'... # what is the difference between a and 'a'
nt=[a, ¢, g, t]; # interpolation

[a, ¢, g, t] = nt; # assigning to lists

lines = lots_of_lines.split("\n");

words = lots_of words.split(" ");

strings are sequences, like arrays, but an array of
characters is not a string.

strings, arrays, and tuples are indexed starting at 0:
arr = [1,2,3,4,5]; arr[0] == 1; arr[length(att)-1] == 5;

Practical Computing, Ch. 9

fasta.bioch.virginia.edu/biol4230

python operators

Arithmetic: addition, subtraction, multiplication, division,
modulus (remainder)

a =2+ 2;

a 2+ 2 *2;, a=2+4+ (2 * 2);

operator precedence, use parens

c += (a + b) # increment by (atb)

division by integer != division by float
7/2 == 3; 7/2.0 = 3.5; # python 2.7 vs 3
Comparison

>, >=, ==, =, <=, < fornumbers and strings
Logical: and 'and"' or 'or' not 'not'
python variables preserve 'type":

print 1 + 2 ==

print VIV == 11D

print 1 + '2' == error

Practical Computing, Ch. 8

fasta.bioch.virginia.edu/biol4230

2/1/18

Flow control: if : else :

+ if:/elif:/else:
[sig, border, not sig] = [0,0,0];
if (evalue <= 0.001):
sig += 1
elif (evalue <= 0.1):
border += 1
else:
not _sig += 1
+ python uses "' with indentation, not { }, to define
statement blocks
+ Conditions can be connected by "boolean" operators:
if (evalue > 0.001 and evalue <= 0.1):
border += 1

’ Practical Computing, Ch. 9 ‘
fasta.bioch.virginia.edu/biol4230

Flow control: for : loops

sum = 0; # always remember to initialize
for value in array of values:
sum += value

python does not have the traditional C/java/perl/fortran indexed
loop of the form:
for (i=0; 1i<n; 11
instead, you can use range () Or enumerate (
for i in range(length(array of values)):
sum += array of values[i]

F bt SR— ryraswrfiJ-1
1 Su— ar¥ray 177

or
for index, value in enumerate(array of values):

sum += array of values[index]

sum v += value # sum and sum v get the same values
but mostly, you do not use the index unless you need to look to the
previous/next entry in the array

Practical Computing, Ch. 9
fasta.bioch.virginia.edu/biol4230

2/1/18

Flow control: while () {} loops

while (line = fd.readline()):

line = line.strip('\n') # always remove "\n" first
columns = '"\t'.split(line)

+ 'continue' skips the rest of the loop
for line in fileinput.input /()
match '>' at beginning of line, FASTA header
if (line[0] == '>"):
continue
do something to sequence lines

* 'preak' exits the loop
for line in fileinput.input():
line = line.strip('\n') # always remove "\n" first
columns = '\t'.split(line)
if (columns[-2] > 0.001)
break

Practical Computing, Ch. 9
fasta.bioch.virginia.edu/biol4230 17

Input/Output |

Data is read with the fileinput.input () function or by opening
a file object fd=open ("filename")

import fileinput
for line in fileinput.input/()
— If you put a file name on the command line, fileinput reads
from the file
— If you put a list of files fileinput reads them in order
— If you don't put a file, fileinput.input () USES stdin
fd = open("filename")
for line in fd :
fd.close() #files should be closed after reading
Lines read from files have "\n" at the end; always remove it
line = line.strip('\n'")

If only one file read at a time, and one file for output, use
fileinput.input () forinput and '>' on the command line to
write to stdout.

Practical Computing, Ch. 9, p 177
fasta.bioch.virginia.edu/biol4230 18

2/1/18

Input/Output I

+ Files can also be opened for writing ('>' or '>>' — extend at
end)

out fd = open('outfile.name', 'w') # open file for writing
- To send data to a file (or stdout), use 'print'

print "accn:",prot acc, "evalue:", evalue # also

Q

print "accn: %s evalue: %g" % (prot acc, evalue)
Goes to stdout (> on the command line)

o)

out fd.write("accn: %s evalue: $s\n" % (prot_acc, evalue))
Goes to 'outfile.name' because of open () above

« .write() lines (unlike print lines) always need "\n"

+ Ifinput is <tab> delimited, output often should be as well.

print "\t".join (map (str] (query acc, subj acc, evalue)))
e out fd.close();

"map" list (array) to str (string) type ‘

’ Practical Computing, Ch. 9, p 182

fasta.bioch.virginia.edu/biol4230 19

Input/Output Examples
Count lines in afile:

#/usr/bin/python

import fileinput

c =0

for line in fileinput.input()
c +=1

print c

$ python count lines.py gstml human
5

$ wc gstml human.aa
5 14 311 gstml_human.aa

fasta.bioch.virginia.edu/biol4230 20

2/1/18

10

Summarize blast output with python

Problem — write a python script to identify
distant homologs, and re-search swissprot with
those sequences

+ Did problem before with bash
blastp —outfmt 6, cut —f 2
« With python, we can look at the expectation

value to find distant homolog candidates (
0.1 < evalue < 2.0)

fasta.bioch.virginia.edu/biol4230 21

python problem solving — initial steps

Look at the (raw) data

|dentify what we need

Isolate the numbers needed, and save them
Do the necessary arithmetic/selection

L~

see Practical Computing, chapter 10, for
an almost identical problem and an
outstanding illustration of typical data
extraction/reduction strategies (Fig. 10.1)

fasta.bioch.virginia.edu/biol4230 22

2/1/18

11

1) Look at the data

sp|GSTM1_HUMAN
sp|GSTM1_HUMAN
sp|GSTM1_HUMAN
sp|GSTM1_HUMAN
sp|GSTM1_HUMAN
sp|GSTM1_HUMAN

sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218 7e-127 452
sp|GSTM4_HUMAN 86.70 218 29 0 1 218 1 218 3e-112 403
sp|GSTM1_MACFA 85.78 218 31 0 1 218 1 218 3e-110 397
Sp|GSTM2_PONAB 85.78 218 31 0 1 218 1 218 le-109 395
sp|GSTM2_MACFA 85.78 218 31 0 1 218 1 218 le-109 395
sp|GSTM5_HUMAN 87.61 218 27 0 1 218 1 218 l1le-109 395

blastp —help

**% Formatting options
-outfmt <String>

alignment view options:

0 = pairwise,

5 = XML Blast output,
6 = tabular,

When not provided, the default value is:

'gseqgid sseqgid pident length mismatch gapopen gstart gend sstart send

evalue bitscore', which is equivalent to the keyword 'std'

Default = ~0'
fasta.bioch.virginia.edu/biol4230 23
gseqid sseqid pident len mis gp gs ge ss se|evalue |bits
sp|GSTM1_HUMAN |sp|GSTM1_HUMAN|100.00 218 0 0 1 218 1 218|7e-127|452
sp|GSTM1_HUMAN |sp|GSTM4_HUMAN| 86.70 218 29 0 1 218 1 218(3e-112|403
sp|GSTM1_HUMAN |sp|GSTM1_MACFA| 85.78 218 31 0 1 218 1 218|3e-110/397
sp|GSTM1_HUMAN |sp|GSTM2_PONAB| 85.78 218 31 0 1 218 1 218|1e-109(395
sp|GSTM1_HUMAN |sp|GSTM2_MACFA| 85.78 218 31 0 1 218 1 218|1e-109(395
sp|GSTM1_HUMAN |sp|GSTM5_HUMAN| 87.61 218 27 0 1 218 1 218[1le-109 (395
1. Subject accession (sseqid)
2. evalue
3. Select hits with 0.1 < evalue < 2.0
fasta.bioch.virginia.edu/biol4230 24

2/1/18

12

2) ldentify/extract the data we need

gseqid sseqid pident len mis gp gs ge ss se|evalue |bits
sp|GSTM1_HUMAN |sp|GSTM1_HUMAN|100.00 218 0 0 1 218 1 218|7e-127|452
sp|GSTM1_HUMAN |sp|GSTM4_HUMAN| 86.70 218 29 0 1 218 1 218|3e-112{403
sp|GSTM1_HUMAN sp|GSTM1_MACFA| 85.78 218 31 0 1 218 1 218|3e-110/(397
sp|GSTM1_HUMAN sp|GSTM2_PONAB| 85.78 218 31 0 1 218 1 218|1e-109(395
sp|GSTM1_HUMAN |sp|GSTM2_MACFA| 85.78 218 31 0 1 218 1 218|1e-109(395
sp|GSTM1_HUMAN |sp|GSTM5_HUMAN| 87.61 218 27 0 1 218 1 218|1e-109(395

Get the data:
import fileinput
for line in fileinput.input():
line = line.strip('\n') # ALWAYS remove \n
fields = line.split('\t') # break fields at tabs
fields[] is an array of strings
numbers must be converted to do arithmetic

oo e

Practical Computing, Ch. 9, p 183

fasta.bioch.virginia.edu/biol4230 25

3) Isolate the numbers, and save them

#fields[0] [1] [2] [3] [41[51[61[71[81[9]1[10] [11]
gseqgid sseqid pident len mis gp gs ge ss se|evalue |bits
sp|GSTM1_HUMAN sp|GSTM1_HUMAN|100.00 218 0 0 1 218 1 218|7e-127|452
sp|GSTM1_HUMAN sp|GSTM4_HUMAN| 86.70 218 29 0 1 218 1 218|3e-112{403

How do we refer to the data? fields = line.split ('\t'")
1) Array:
fields[0], fields[1l], fields[3], ...
or isolate the ones you need:
subj acc, evalue = fields[1l], fields[10]
subj acc, evalue = fields[1l], fields[-2]

The problem with arrays is that you need to remember where the data
is. Is fields[10] the evalue, or the bit score?

2) Dict: (no longer need to remember array indexes, remember names)
field names = ['gsegid', 'sseqgid', ..., 'evalue', 'bits']
hit dict = dict(zip(field names, fields))

hit dict = dict(zip(field names, line.split('\t')))

zip merges dict "keys" (field names) with "values" (data)

fasta.bioch.virginia.edu/biol4230 26

2/1/18

13

4) Do the necessary arithmetic/selection

gseqid sseqid pident len mis gp gs ge ss se|evalue |bits
sp|GSTM1_HUMAN sp|GSTM1_HUMAN 100.00 218 0 0 1 218 1 218|7e-127|452
sp|GSTM1_HUMAN |sp|GSTM4_HUMAN| 86.70 218 29 0 1 218 1 218|3e-112{403

Identify the hits with 0.01 < evalue < 2.0 -
why is float() needed?

if (float(fields[-2]) > 0.1 and float(fields[-2]) <= 2.0)
print fields[1]+'\t'+fields[-2]

alternatively
if (float(hit dict['evalue']) > 0.1 and
float (hit_dict['evalue']) <= 2.0)
print hit dict['sseqid']+'\t'+hit dict['evalue']

fasta.bioch.virginia.edu/biol4230

27

Summary — Introduction to python

+ Variable types:
— floats, ints, strings
— arrays=[], tuples=() of floats, ints, strings
— dict's (hashes) fields = dict(zip(names, data))
+ Control structures:
- for x in list
- if (true) : ; elif (true): ; else
— statement blocks are indented
+ Functions are often applied to variables
- array.sort ()
- string.strip("\n"), string.split("\t")
+ Some functions are "imported"
- import fileinput
for line in fileinput.input ()
— from urllib import urlopen
print urlopen (url string).read()

fasta.bioch.virginia.edu/biol4230

28

2/1/18

14

4.

Homework, due Monday, 5 Feb (biol4230/hwk3)

arrays of random numbers:

a.

b.

C.

Write a program to generate 10 random numbers between 0 and 100 (0 <= x < 100),
calculate the mean (average). Print both the random numbers and the mean.

write a program that calculates the average of 100 random "real" numbers between 0
and 200 (0 <= x < 200)

write a program that generates 101 random numbers, stores them in an array, and
calculates the median (hint, use the sorted() function to sort the array)

write a program that reads a file of Uniprot accession strings and downloads the sequences
in FASTA format to "stdout" (use urllib), like hwk1

repeat parts of last week's homework using python:

a.

Using one of the blastp (or ssearch36) tabular output files you generated in the
similarity searching lab, write a program that extracts the accession and E()-value from
the output file. Just as you used "cut" last week, you can use ".split()" this week
modify the program to extract the accessions, but only for results with E() < 0.001
(remember that the tabular output files are ordered by E()-value, so you can stop once
you hit 0.001).

write a program that downloads sequences for the blastp or ssearch36 accessions with
0.1 < E() <= 2.0, and runs another blastp search (tabular format) with the downloaded
sequences, saving the results of each search in a separate file.

As always, document the scripts in hwk3.notes.

fasta.bioch.virginia.edu/biol4230 29

2/1/18

15

